Strategic Energy Management Plan

College of New Caledonia

November, 2009

Table of Contents

1.	OUR ORGANIZATION
1.1 1.2 1.3 1.4 1.5	ORGANIZATIONAL PROFILE3FACILITY PROFILE4KEY PERFORMANCE INDICATORS5LIST OF STAKEHOLDERS5LIST OF ENERGY VOLUNTEERS5
2.	OUR COMMITMENT
2.1 2.2 2.3	ENERGY POLICY6Mission Statement6Guiding Principles6Specific Objectives6SUSTAINABILITY POLICY7WHY ENERGY MANAGEMENT IS IMPORTANT TO CNC?7
3.	UNDERSTANING OUR SITUATION
3.1 3.2 3.3 3.4 3.5 3.6	ENERGY CONSUMPTION AND COSTS
4.	OUR ACTIONS
4.1 4.2 4.3 4.4	QUARTERLY GOALS AND OBJECTIVES27ANNUAL GOALS AND OBJECTIVES29ANNUAL ENERGY INTENSITY BY KEY PERFORMANCE INDICATORS29PLANNED ACTIONS (PROJECT LIST)29
5.	APPENDIX A
6.	APPENDIX B – BASELINE DETAILS
7.	APPENDIX C – METRIX® ANALYSIS RESULTS
8.	APPENDIX D – ASSET REGISTRY
9.	APPENDIX E – FLOOR PLANS

1. OUR ORGANIZATION

1.1 Organizational Profile

Org	Organization Profile										
	Sector				Commercial Other (Governme Educatio Health (ent n)	_)			
P E O P L E	Number of Employees	Total (S that in S	hould e Sectior	equal 1.2	Number of Site	S	1 (3 facilities)				
	Number of stakeholders	6 Stakeh	older g	Iroups E	Energy Manag	er	Peter Rowles Energy Adva	s, P.Eng. ntage Inc.			
	Executive Support	John Bowman Penny Fahlman Jim Hoyer Burke Gulbranson Randal Heidt			Energy Committee		Jim Hoyer Burke Gulbranson Jeff Shaw Neil Richards Larry Kabatoff				
	Energy Volunteers		None								
	Energy Management Issues / Obstacles	 Dem Under Awa Rese Procession 	 Demonstrated corporate commitment Understanding of performance and opportunities Awareness and training Resourcing Procedures - plant design/retrofit, purchasing/replacement 								
	Core Business Metrics	1. Num 2. Floo	 Number of students Floor Area 								
O P	Business Year	April 01 March 31									
E R	Budget Cycle			A	pril 01	March 31					
	Maintenance Cycle			A	pril 01		March 31				
N S	Maintenance Budget	Previous Year	N/A	Current Year	N/A	Year 1	N/A	Year 2	N/A		
	Energy Efficiency Projects Budget	Previous Year	N/A	Current Year	N/A	Year 1	N/A	Year 2	N/A		
	Operations Budget	Previous Year	N/A	Current Year	\$3,300,000	Year 1	\$3,300,000	Year 2	\$3,300,000		
	Utilities budget	Previous Year	N/A	Current Year	N/A	Year 1	N/A	Year 2	N/A		

Other Incentives			Current Year	N/A	Year 1	N/A	Year 2	N/A
Capital Budget	Previous Year	N/A	Current Year	N/A	Year 1	N/A	Year 2	N/A

1.2 Facility Profile

Facility Profile (April 1, 2008 to March 31, 2009)								
	Number of Students (Fall Semester)	Size	Annual	Annual		Energy Intensity, \$/sq.ft.	Energy Intensity per Student, ekWh/stud ent	
Site (location or name)		(ft2)	Energy Consumption (ekWh)	Energy Cost (\$)	Energy Intensity, kWh/sq.ft.			
Main Campus	N/A	384,537	12,865,863	\$ 622,188	33.46	1.62	N/A	
Nicholson Building	N/A	24,197	580,837	\$ 33,582	24.00	1.39	N/A	
Brink Building	N/A	58,900	1,409,260	\$ 70,282	23.93	1.19	N/A	
TOTAL	2219	467,634	14,855,960	\$ 726,052	31.77	1.55	6,695	

1.3 Key Performance Indicators

Key Performance Indicator (April 1, 2008 to March 31, 2009)							
Variable	Current Fall Enrollment	Last Year Fall Enrollment	2 Years Ago Fall Enrollment				
Total Number of Students for Prince George Campus	2443	2219	2312				

1.4 List of Stakeholders

Definition:

The following persons, groups, or organizations have a direct or indirect stake in the College of New Caledonia because they can affect or be affected by the organization's actions, objectives, and policies:

Students College Employees Board of Governors Ministry of Advanced Education Community Energy Utility

1.5 List of Energy Volunteers

There are no energy volunteers at this time.

2. OUR COMMITMENT

2.1 Energy Policy

The following Energy Policy has been prepared by the Energy Committee and reviewed by senior executives of the College and is in the process of being approved by the President of the College.

Mission Statement

Energy management, with a focus on long-term sustainability, has become an important part of how our organization operates and interacts within the larger community. CNC is committed to the sustainable management of energy practices for its operations. Through improved efficiency, demand conservation, and the use of available clean energy alternatives, CNC will maintain an efficient, effective, and transparent energy program. This will provide a better future for our organization, the community and the environment.

Guiding Principles

CNC will support this goal with the help of five guiding principles:

- Leadership: CNC will strive to meet or exceed sector benchmarks or standards.
- **Transparency**: Clear, open communication, internally and externally to the organization, is key for the successful management of an energy program. CNC is committed to a transparent and open energy management program.
- **Innovation**: CNC, as an institution of higher education, will seek out opportunities to incorporate innovative ideas and technology in its energy management program.
- **Inclusion**: CNC's energy management program will be a collaborative effort engaging all stakeholders. New ideas will be actively encouraged from all employees, students and community members.
- **Balance**: CNC believes that the most successful energy management program will have a balance between conservation and the comfort of our students and employees.

Specific Objectives

CNC will:

- Reduce consumption and increase efficiency in our energy consumption.
- Promote an informed and involved community of employees that works towards continual improvement in energy management practices.
- Pursue opportunities to engage, collaborate and partner with organizations and other orders of government on programs and legislative initiatives to improve energy consumption.
- Actively pursue available technologies to reduce consumption, improve efficiency and make use of clean and sustainable energy technologies.
- Provide consistent and clear communication to internal and external communities with respect to our energy program.
- Continually seek out new ways to improve our energy performance, meet stated goals and contribute to a sustainable energy future.

2.2 Sustainability Policy

The College of New Caledonia has a Sustainability Committee and is the process of developing a Sustainability Policy. CNC has recently developed a Carbon Neutral Action Plan in compliance with the provincial government's Greenhouse Gas Reduction ACT.

2.3 Why Energy Management is Important to CNC?

Energy Management is important to the College of New Caledonia for variety of reasons. Participation in EMP helps CNC to:

- Identify and implement opportunities to save energy.
- Reduce energy cost and consumption.
- Lower utility rates.
- Gain environmental benefits with focus on long-term sustainability.
- Set a good example within community.

3. UNDERSTANING OUR SITUATION

3.1 Energy Consumption and Costs

Energy consumption and costs are being reported on a fiscal year basis. The fiscal year end is March 31st.

Facility Profile (April 1, 2008 to March 31, 2009)								
	Size	Annual	Annual	Energy	Energy			
Site (location or name)	(ft2)	Energy Consumption (ekWh)	Energy Cost (\$)	Intensity, kWh/sq.ft.	Intensity, \$/sq.ft.			
Main Campus	384,537	12,865,863	\$ 622,188	33.46	1.62			
Nicholson Building	24,197	580,837	\$ 33,582	24.00	1.39			
Brink Building	58,900	1,409,260	\$ 70,282	23.93	1.19			
TOTAL	467,634	14,855,960	\$ 726,052	31.77	1.55			

CNC Total Utility Costs April 01, 2008 - March 31, 2009

Utility	Consumption	Costs				
(April 01,2008- March 31, 2009)	Unit	\$	%			
	Main Can	npus				
Electricity, kWh	5,901,501	\$325,495.55	52%			
Natural Gas, ekWh	6,964,361	\$296,692.41	48%			
Nicholson Building						
Electricity, kWh	180,096	\$14,246.59	42%			
Natural Gas, ekWh	400,741	\$19,335.46	58%			
	Brink Buil	lding				
Electricity, kWh	551,409	\$37,232.67	53%			
Natural Gas, ekWh	857,852	\$33,049.01	47%			
Total						
Electricity, kWh	6,633,006	\$376,974.81	52%			
Natural Gas, ekWh	8,222,954	\$349,076.88	48%			

Electricity and Natural Gas Cost and Consumption per Facility

3.2 Energy Breakdown

A detailed energy audit was completed in 2008. The results of the audit provided a breakdown of electricity and gas usage for the campus. CNC's overall <u>electrical energy use</u> is broken down in the following table. As indicated lighting is the major consumer of energy at 45.7% of total usage.

Rank	End Use	End Use Percent	Electricity Use (MWh/yr)	Cost (\$/yr)
1	Interior and Exterior Lighting	45.7%	3,031.28	\$172,277
2	Air Distribution	16.2%	1,074.55	\$61,070
3	Unaccounted	8.6%	570.44	\$32,420
4	Exhaust Fans	6.7%	444.41	\$25,257
5	Cooling: Space	6.4%	424.51	\$24,126
11	Office Equipment	6.3%	417.88	\$23,749
7	Heating: Space	6.1%	404.61	\$22,995
8	Shop Tools	3.2%	212.26	\$12,063
9	Compressed Air: Process	0.4%	26.53	\$1,508
10	Heating: Domestic Service Water	0.4%	26.53	\$1,508
Total:		100.0%	6,633	\$ 376,974.81

Electrical Energy Use Breakdown

CNC's overall <u>natural gas energy use</u> is broken down in the following table. As shown here, space heating represents 79% of gas consumption.

Rank	End Use	End Use Percent	Natural Gas Use (eMWh/yr)	Cost (\$/yr)
1	Heating and Ventilation (Boiler Plant)	78.8%	6,479.69	\$275,073
2	Heating: Domestic Service Water	7.0%	575.61	\$24,435
3	Ventilation (RTU's & MAU's)	6.0%	493.38	\$20,945
4	Kitchen Equipment	5.2%	427.59	\$18,152
5	Unaccounted	3.0%	246.69	\$10,472
Totals		100.0%	8222.95	\$ 349,076.88

3.3 Baseline Energy Use

The following chart demonstrates baseline electrical and natural consumption. The fiscal period April 01, 2008 – March 31, 2009 was selected for the purpose of baselining, as well as Energy Intensity Index (ekWh/sq.ft.) for the same period.

The following charts demonstrate comparison between consumption of electricity and natural gas in fiscal years 2008, 2009, and 2010.

The following chart represents year-to-date electricity savings based on weather normalization analysis which is presented and explained in section 3.4.

YTD Comparison of Baseline and Actual Electricity Consumption
with Weather Correction

kWh	Apr-09	May-09	Jun-09	Jul-09	Aug-09	Sep-09
Baseline	632,455	441,620	486,682	461,315	430,792	441,911
Actual	605,878	444,238	496,198	430,438	435,598	475,318
Baseline - Actual	26,577	- 2,619	- 9,516	30,877	- 4,807	- 33,407
Savings	4.2%	-0.6%	-2.0%	6.7%	-1.1%	-7.6%
Total Savings YTD						7,106

Based on the cost and consumption charts electrical and natural gas consumption patterns repeat from year to year. Electricity and natural gas consumption peaks are observed during winter months. Current year demonstrated higher cost and consumption over last 12 months.

3.4 Savings Opportunity Assessment - Energy Consumption & Cost Intensity

To make a fair comparison between energy consumption in two or more periods and determine energy savings, weather normalization analysis is performed. Weather normalization is a mathematical method which is usually based on regression analysis of past energy data. As a result of weather normalization a regression equation is derived, and it used as a representation of building's energy consumption. This method allows one to compare how much energy the building should have used during the performance period based on its consumption patterns during the baseline period with actual energy consumption during the performance period.

Regression equation consists of two parts: the baseload (non-weather depended energy consumption) and the weather sensitive part (energy consumption which depends upon outside temperature and is described by regression coefficient). Along with the regression equation, building's balance point is determined.

Regression Equation:

Energy Consumption = (Baseload x Days) + (Regression Coefficient x HDD/CDD)

Balance point represents the most accurate reflection of the outside temperature at which a building becomes weather sensitive. If the actual balance points are not used when applying the equations and instead a standard set of balance points is chosen, these regression equations will provide skewed results.

The equations are also represented with their accompanying statistical indicators (or determining statistics.) These indicators are a measure of the overall "goodness of fit" in the correlation coefficient (R^2) and the coefficient of variance (CVRMSE) which is a test score describing how far, on average, the actual consumption points are from what the baseline equation defines. Test of statistical significance are also carried out (t-tests).

To determine regression equations for each building Metrix® software was used.

To identify baseline regression equation, data from fiscal years 2009 and 2008 was used.

The results of regression analysis are presented in the table below:

Facility Name	Utility Type	Balance Point	Baseload	Regression Coefficient	R2	CVRMSE	Baseline Period Used
Main Campus	E	HDD = 19.8 °C	11,363.0	319.24	0.958	3.58	03/19/2008 - 03/18/2009
Main Campus	NG	HDD = 14.0 °C	68.3	161.63	0.983	10.63	04/01/2008 - 03/31/2009
Brink Building	E	HDD = 19.7°C	1,186.2	20.64	0.816	5.89	03/19/2008 - 03/18/2009
Brink Building	NG	HDD = 10 °C	23.6	19.86	0.993	8.53	12/19/2006 - 01/18/2008
Nicholson Building	E	HDD = 18.2 °C	356.3	9.5	0.821	8.19	03/19/2008 - 03/18/2009
Nicholson Building	NG	HDD = 12.3 °C	5.2	10.73	0.984	11.88	04/18/2008 - 04/20/2009

Regression Equations

Graphical interpretation of the regression equations may be found in Appendix C.

3.5 Benchmarking Analysis – Building Energy Performance Index

To perform Benchmarking analysis, data from Natural Resources Canada (NRCan) was used. Comparison was done between national average (82 colleges were considered to establish regional and national benchmarks) and energy intensity indexes for each of three facilities. According to NRCan the following benchmarks apply for colleges: in British Columbia annual (total) energy consumption per unit of area is:

British Columbia averages

Total Energy = 42.3 ekWh/ft^2

National Averages:

Total Energy = 29.8 ekWh/ft^2

Facility Name	2007 Energy Intensity, ekWh/sq.f t.2	2007 Energy Intensity, \$/sq.ft2	2008 Energy Intensity, ekWh/sq.f t.2	2008 Energy Intensity, \$/sq.ft2	2009 Energy Intensity, ekWh/sq.f t.2	2009 Energy Intensity, \$/sq.ft2
Main Campus	30.57	16.26	31.66	16.80	33.46	18.96
Nicholson Building	25.40	19.56	26.88	20.36	24.00	17.15
Brink Building	18.97	10.87	19.76	11.09	23.93	15.20
Total	28.84	15.75	29.92	16.27	31.77	18.39

Total Energy Intensity, ekWh/sq.ft.

Based on this analysis all of the CNC's Prince George facilities are below regional benchmarks. However, Main Campus is above national regional benchmarks, most likely because of the power plant included under this facility which has a lot of energy intensive equipment.

3.6 Asset Registry

Major equipment inventory for each facility and associated with them energy intensities are presented in tables below. The data is taken from Energy Audit report and based on 2008 information. More detailed list of equipment is attached to Appendix D.

Based on this analysis the largest amount of energy is consumed by lighting load.

NICHOLSON BUILDING

Asset Registry					
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/ sq.ft.
1	Heating Coil Units	-	-	188,415	7.79
2	Gas Furnace	674.20	187,292.76		7.74
3	Lighting	-	-	88,469	3.66
4	Plug Load	-	-	12,008	0.50
5	Unaccounted for Gas	33.00	9,167.40		0.38
Building	g Totals:	707.20	196,460.16	288,892.00	20.06

MAIN CAMPUS

100 Electrical Room

Asset Registry								
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity			
1	Lighting	-	-	367,840.00	10.65			
2	AHU-1	-	-	49,257.00	1.43			
3	Plug Load	-	-	38,755.00	1.12			
4	DHW	-	-	16,117.00	0.47			
5	Exhaust Fans	-	-		0.00			
Building Totals:		-	-	471,969.00	13.66			

Asset Registry							
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.		
1	Lighting Load		-	516,891.00	6.48		
2	Kitchen Equipment	1,265.20	351,472.56		4.41		
3	DHW	955.80	265,521.24		3.33		
4	Plug Load		-	81,363.00	1.02		
5	AHU-8		-	80,146.00	1.00		
6	Exhaust Fans		-	72,374.00	0.91		
7	AHU-4		-	62,614.00	0.79		
8	AHU-2		-	52,673.00	0.66		
9	AHU-7		-	21,868.00	0.27		
Building	g Totals:	2,221.00	616,993.80	887,929.00	18.87		

300 Computer and Classroom

Asset Registry								
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.			
1	Lighting	-	-	374,066.00	5.42			
2	AHU-5	-	-	87,659.00	1.27			
3	AHU-3	-	-	85,942.00	1.25			
4	AHU-6	-	-	82,872.00	1.20			
5	ACU-1	-	-	12,592.00	0.18			
6	Plug Load	-	-	8,760.00	0.13			
Building Totals:		-	-	651,891.00	9.45			

450 Daycare and 400 Dental

Asset Registr	Asset Registry							
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.			
1	Lighting	-	-	111,674.00	4.97			
2	DHW	391.60	108,786.48	-	4.84			
3	Lighting	-	-	25,245.00	1.12			
4	AHU-17	-	-	17,935.00	0.80			
5	Plug Load	-	-	14,569.00	0.65			
6	AHU-18	-	-	12,930.00	0.58			
7	Plug Load	-	-	11,193.00	0.50			
8	AHU-16	-	-	2,199.00	0.10			
9	Exhaust Fans	-	-	1,672.00	0.07			
10	Exhaust Fans	-	-	1,434.00	0.06			
Building Totals:		391.60	108,786.48	198,851.00	13.69			

500 Gymnasium

Asset Registry								
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.			
1	Lighting			229,499.00	8.37			
2	AHU-9		-	32,512.00	1.19			
3	Plug Load		-	15,865.00	0.58			
4	DHW	39.80	11,056.44	-	0.40			
5	AHU-10		-	10,054.00	0.37			
6	Exhaust Fans			3,235.00	0.12			
Building Totals:		39.80	11,056.44	291,165.00	11.02			

700 Library

Asset Registry					
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.
1	Lighting	-		509,878.00	7.57
2	AHU-720	-	-	149,270.00	2.22
3	AHU-719	-	-	104,774.00	1.56
4	Plug Load	-	-	92,065.00	1.37
5	Exhaust Fans	-		12,973.00	0.19
6	ACU	-	-	10,366.00	0.15
Building Tota	ls:	-	-	879,326.00	13.06

800 Industrial Education

Asset Registry					
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.
1	Shop Equipment	-	-	1,597,721	27.10
2	MAU-1	1,644.00	456,703.20	39,243	8.41
3	Lighting	-	-	301,123	5.11
4	Exhaust	-	-	300,663	5.10
5	Plug Load	-	-	50,448	0.86
6	MU-1	-	-	19,156	0.32
7	AHU-14	-	-	11,694	0.20
8	DHW	39.80	11,056.44	-	0.19
9	MU-2	-	-	9,812	0.17
10	AHU-2	-	-	5,625	0.10
11	AHU-15	-	-	1,694	0.03
12	MAU-1 Gring Room	-	-	932	0.02
13	AHU-1	-	-	634	0.01
14	HVAC	-	-	-	0.00
15	Unit heaters	-	-	-	0.00
Building Totals:		1,683.80	467,759.64	2,338,745.00	47.60

940 Maintenance Workshop

Asset Registry					
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.
1	Plug Load	-	-	2,562	1.89
2	Lighting	-	-	2,346	1.73
Building Totals:		-	-	4,908.00	3.62

960 Power Plant

Asset Registry					
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.
1	Boiler Plant	15,638.70	4,344,430.86	349,547.00	541.03
2	Unaccounted	576.90	160,262.82	517,821	78.16
3	Chiller Plant	-	-	205,244.00	23.66
4	Compressed Air	-	-	28,590.00	3.30
5	Lighting	-	-	18,144.00	2.09
6	DWH	-	-	10,278.00	1.18
7	Plug Load	-	-	1,770	0.20
Building Totals:		16,215.60	4,504,693.68	1,131,394.00	649.62

960A Tunnel

Asset Registry						
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.	
1	Lighting	-	-	39,682	9.92	
2	Plug Load	-	-	3,548	0.89	
Building Totals:		-	-	43,230.00	10.81	

980 Power Engineering

Asset Registry					
Rank	System	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.
1	Teaching Boilers	388.40	107,897.52	-	15.40
2	Lighting	-	-	43,160	6.16
3	Plug Load	-	-	8,760	1.25
Building Totals:		388.40	107,897.52	51,920.00	22.81

1000 Brink Building

Asset Registry	Asset Registry									
Rank	System	Make/Model	Fuel Energy (GJ)	Fuel Energy (ekWh)	Electrical Energy (kWh)	Energy Intensity, ekWh/sq.ft.				
1	Lighting		-	-	202,576	3.44				
2	MUA-2	Engineered Air/DJ-100-0	329.00	91,396.20	16,177	1.83				
3	MUA-3	Engineered Air/DJ-100-0	315.30	87,590.34	15,011	1.74				
4	MUA-1	Engineered Air/DJ-100-0	293.60	81,562.08	13,919	1.62				
5	DWH		282.40	78,450.72	-	1.33				
6	UAF		124.00	34,447.20	39,420	1.25				
7	PLUG		-	-	52,089	0.88				
8	ST		-	-	44,928	0.76				
9	Exhaust Fans		-		26,837	0.46				
10	RTU-14	Lennox/LGC0 120S2B	48.00	13,334.40	10,517.00	0.40				
11	RTU-10	Lennox/GCS1 6-653-125	46.10	12,806.58	8,177.00	0.36				
12	RTU-07	Lennox/LGC0 42S2B	40.80	11,334.24	8,203.00	0.33				
13	RTU-15	Lennox/LGC0 48S2B	28.80	8,000.64	10,834.00	0.32				
14	RTU-09	Lennox/GCS1 6-653-125	36.90	10,250.82	8,496.00	0.32				
15	RTU-08	Lennox/GCS1 6-653-125	35.80	9,945.24	7,216.00	0.29				
16	DE		-	-	14,607	0.25				
17	RTU-13	Lennox/LGC0 48S2B	28.80	8,000.64	5,746.00	0.23				
18	RTU-11	Lennox/LGC0 48S2B	28.80	8,000.64	5,067.00	0.22				
19	RTU-12	Lennox/LGC0 48S2B	28.80	8,000.64	4,564.00	0.21				
20	RTU-06	Lennox/LGC0 60S2B	23.00	6,389.40	5,768.00	0.21				
21	RTU-03	Lennox/LGC0 42S2B	23.00	6,389.40	5,025.00	0.19				
22	RTU-05	Lennox/LGC0 42S2B	23.00	6,389.40	5,025.00	0.19				
23	RTU-04	Lennox/LGC0 48S2B	23.00	6,389.40	5,023.00	0.19				
24	RTU-02	Lennox/LGC0 36S2B	23.00	6,389.40	4,828.00	0.19				
25	RTU-01	Lennox/LGC0 36S2B	23.00	6,389.40	4,652.00	0.19				
26	Electric baseboard Heating		-	-	7,008	0.12				
Building Total			1,805.10	501,456.78	531,713.00	17.54				

4. OUR ACTIONS

CNC's Energy Management Program was initiated in January 2009 with the appointment of Energy Advantage to fill the Energy Manager's role. An Executive Committee and Operations Energy Committee were formed in January. The Executive Committee met 5 times during the year including 3 quarterly meetings with BC Hydro. The Operations Energy Committee met 7 times during the year. The notes from these meetings are presented in Appendix E. Major activities during the year were:

- Collection and organization of Baseline and ongoing monthly energy cost and consumption data
- Baseline analysis and Metrix® tuning for weather normalization
- Review of Energy Audit recommendations and development of retrofit plan
- Preparation and execution of feasibility study to upgrade power plant
- Energy Awareness opportunity assessment
- Incorporation of energy efficiency standards into procurement policies
- Development of Energy Policy
- Completion of an IT Optimization Study
- Preparation of application for BC Hydro's continuous optimization program.

As a result of this work CNC has developed a long term goal to achieve an energy intensity reduction of 15% by the end of fiscal year 2013 (3 years) by the implementation of cost-effective energy management initiatives at our facilities in Prince George.

4.1 Quarterly Goals and Objectives

Baseline (Fiscal 2009) Years Quarterly Consumption	Electricity Reduction Targe							
kWh	kWh	%						
1,531,434.58	122,904	8%						
1,388,039.20	122,904	9%						
1,795,454.60	145,348	8%						
1,918,077.82	145,348	8%						
6,633,006.19	536,503	8%						

Quarterly Electricity Reduction Targets

Quarterly Natural Gas Reduction Targets

Baseline (Fiscal 2009) Years Quarterly Consumption	Natural Gas Reduction Targ						
kWh	kWh	%					
1,180,714.97	61,672	5%					
467,039.39	61,672	13%					
2,885,967.72	340,167	12%					
3,689,231.48	340,167	9%					
8,222,953.57	803,678	10%					

4.2 Annual Goals and Objectives

Annual Electricity Reduction Targets

Year	Electricity Consumption Reduction Targets							
Fiscal 2009	0	0%						
Fiscal 2010	30,713	0%						
Fiscal 2011	536,503	8%						
Fiscal 2012	1,024,140	15%						
Fiscal 2013	1,368,833	21%						

Annual Natural Gas Reduction Targets

Year	NG Consumption Reduction Targets							
Fiscal 2009	0	0%						
Fiscal 2010	-	0%						
Fiscal 2011	803,678	10%						
Fiscal 2012	1,360,667	17%						
Fiscal 2013	1,360,667	17%						

4.3 Annual Energy Intensity by Key Performance Indicators

Are you becoming more Energy Efficient?

Year	Annual Electricity	Number of Students	Area, sq.ft.	Energy Intensity per Student	Energy ensity per Energy Student Intensity		Percent Decrease per	
	Consumption, (Fall KWh Semester)			(kWh/ student)	(kWh/ sq.ft.)	per year (%)	year (%)	
Fiscal 2009	6,633,006	2,219	467,634	2,989	14.18	0%	0%	
Fiscal 2010	5,758,066	2,443	467,634	2,357	12.31	21%	13%	

Annual consumption for 2010 has been estimated based on 6 months of data.

4.4 Planned Actions (Project List)

The following table provides a list of projects which the college plans to implement over the next 3 years subject to the availability of Capital funding. The overall program is expected to reduce electricity usage by 1,700,000 kWh per year.

Energy Management Assessment (EMA) - Technical Projects

Potential Projects	otential Projects										
Project Name	Description	Location	Potential Electrical Svgs (kWh)	Potential Other Fuel Svgs (GJ)	Potential Total Svgs (Energy + Operational)	Projected Total Cos	Potential BC Hydro Incentive	Potential NRCan Incentive	Total Potential Incentives	Projected Simple Pay Back	Status
5.2.1 - Comprehensive Lighting	Lighting	Main Campus	151,973	-	\$ 8,220	\$ 128,30) \$ 12,158	\$ 5,471	\$ 17,628	13.46	Investigating Incentives
5.3.1 - Brink Classroom 1031 RT	Recommissioning	Brink Building	-	76	\$ 869	\$ 46	D\$-	\$ -	\$-	0.53	Investigating Incentives
5.3.10 - Demand Control Ventilation	BAS	Main Campus	-	32	\$ 302	\$ 2,19	D\$-	\$ 320	\$ 320	6.19	Investigating Incentives
5.3.11 - Insulate Domestic HW Piping	Mechanical	Main Campus	-	17	\$ 160	\$ 1,68	D\$-	\$ 170	\$ 170	9.44	Investigating Incentives
5.3.2 - Full Recirculation in Un.	Recommissioning	Main Campus	-	66	\$ 627	\$ 1,38)-\$ 315	\$ 660	\$ 345	1.65	Investigating Incentives
5.3.4 - Industrial Education Bu	BAS	Industrial Education Building	77	350	\$ 3,316	\$ 23,58)\$-	\$ 3,503	\$ 3,503	6.05	Investigating Incentives
5.3.6 - Holiday Scheduling	Recommissioning	Main Campus	24,519	332	\$ 4,066	\$ 1,38	D\$-	\$-	\$-	0.34	Investigating Incentives
5.3.7 - Reduce Ventilation for Caf and Ki	Recommissioning	Main Campus	34,412	365	\$ 4,678	\$ 53,36) \$ 2,753	\$ 4,889	\$ 7,642	9.77	Investigating Incentives
5.3.8 - Align Operating Hours of AHU-72	Recommissioning	Main Campus	20,593	115	\$ 1,862	\$ 11	D\$-	\$-	\$-	0.06	Investigating Incentives
5.3.9 - Zone Isolation for Block 700 1st fl	Recommissioning	Main Campus	2,111	111	\$ 1,132	\$ 2,76) \$ 169	\$ 1,186	\$ 1,355	1.24	Investigating Incentives
5.4.1 Standby Mode for Brink RTUs	BAS	Main Campus	2,334	33	\$ 464	\$ 6,78	5 \$ 187	\$ 414	\$ 601	13.33	Investigating Incentives
5.4.2 - Change VIV to VSD	HVAC	Main Campus	152,606	-	\$ 5,748	\$ 113,96	5 \$ 12,208	\$ 5,493	\$ 17,702	16.75	Investigating Incentives
5.4.5 - Theatre Isolation	BAS	Main Campus	5,731	30	\$ 503	\$ 5,17	5 \$ 458	\$ 506	\$ 965	8.37	Investigating Incentives
5.4.8 - Lighting Retrofits	Lighting	Main Campus	1,028,935	-	\$ 59,359	\$ 815,39	3 \$ 82,315	\$ 37,039	\$ 119,353	11.73	Investigating Incentives
5.4.9 - Gym Lighting Upgrade	Lighting	Main Campus	26,551	-	\$ 1,000	\$ 60,00	\$ 2,124	\$ 956	\$ 3,080	56.92	Investigating Incentives
5.4.10 - Seating Area Lighting	Lighting	Main Campus	23,364	-	\$ 880	\$ 40,00	\$ 1,869	\$ 841	\$ 2,710	42.37	Receiving quotes for supply and installation
5.5.1 Power Plant Upgrade	Chilers/Boilers	Power Plant	103,200	2,500	\$ 29,870	TBD	TBD	TBD	TBD	TBD	RFP for feasibility study issued. Study to be
Power Management Software											
			1,576,406	4,027	\$ 123,05	6 \$1,256,5	23 \$113,926	\$ 61,447	\$ 175,374	. 8.79	

5. APPENDIX A

Eg. EMA cover letter + EMA Gantt chart (Action Timeline) + EMA journal notes

BChydro © powersmart

reliable power, at low cost, for generations

June 30, 2008

James Hoyer Director, Facility Services College of New Caledonia (CNC) Prince George, BC

Dear James,

Thank you for your time and that of your management team on June 24th. I appreciated your input and feedback and trust that you found the One-2-Five Energy diagnostic session an informative and worthwhile exercise.

The One-2-Five Energy diagnostic session revealed that:

- You rated your operations at the 1 Star level;
- Your organization has an IBR of 0.83; and
- An annual savings in the region of 12.8% to 16.7% could be available.

Based on the results of the diagnostic session, it is recommended that you focus on the following elements to continue to improve energy management:

1.1 Demonstrated leadership commitment

Arrange for an executive-level officer to sign an energy-specific policy or directive containing specific, quantitative goals and objectives for improving energy efficiency and/or reducing energy costs.

2.1 Understanding Performance and Opportunities

Establish the energy consumption and determine the potential energy savings for each major operational area or system.

4.2 Awareness and Training

Conduct basic energy-awareness activities within your organization, focusing on cost savings and environmental issues associated with energy use.

4.3 Resourcing

Develop resource planning activities to ensure access to enough suitably skilled people to rectify energy waste in a timely manner.

8.2 Procedures for Equipment Selection

Document and communicate the purchase guidelines to be used for selection of energy efficient equipment.

Included in this package are a detailed Energy Management System Action Plan and Diagnostic Report that outline these recommendations in further detail. Also included is a draft Energy Management Action Plan Timeline that can serve as a starting point for identifying the specific task items necessary for implementation of the recommended actions outlined and provide a template for managing the ongoing progress toward implementation. I will work with you to finalize the draft Action Plan Timeline.

BC Hydro would like to thank CNC for your participation in the One-2-Five Energy diagnostic session, and we look forward to working with you in implementing these recommendations and supporting your energy management activities.

Sincerely,

Lindsay Smilgis Key Account Manager

One-2-Five Energy Recommended Actions						Tim	eline					
	Mo 1	Mo 2	Mo 3	Mo 4	Mo 5	Mo 6	Mo 7	Mo 8	Mo 9	Mo 10	Mo 11	Mo 12
11 Demonstrated Leadershin Commitment												
1.1.1 Quantify the benefit of energy conservation activities conducted to date	С, В										1 1	1
>Specify numerous projects and activities undertaken to date												1
>Specify the financial benefits as well as public image and marketability benefits											1 1	1
1.1.2 Outline the additional benefits possible by having an organization-wide directive for energy conservation		C,B	4									1
>Include financial benefits to organization											1 1	1
Include positive impact to CNC image 113 Review careful experts relieve to targete accorded by other exceptions		CR										1
1.1.3 Review sample energy poincy statements created by one organizations 114. Create an energy management ctatement as a start of an existing broader environmental program		С,В	4				1					1
If not of a broader sustainability notice, include a senarate commitment statement specifically aimed at energy issues							3					1
>Establish clear and quantifiable goals for the organization that pertain directly and exclusively to energy											1 1	1
>Initial goals for energy can be based on existing knowledge of opportunities, comparison with performance metrics of other entities, or indicative											1 1	1
savings resulting from the One-2-Five exercise											1 1	1
1.1.5 Identify key individual within the highest levels of leadership to sponsor an organization level energy policy			C,B		8				,			1
1.1.6 Present draft energy policy and potential benefits (quantitative and qualitative) to identified leadership for signature				6								1
>May require modification as called out by leadership prior to signature											1 1	1
1.1.7 Communicate energy pointy to an of the organization and remote over time by creating regular reporting to management on the progress made											1 1	1
toward goals in the policy statement. 118 Deliver summary reporting on a regular basis to Executive management on progress towards policy goals						1						
 Report should go to leadership sponsor that has signed the energy policy 											1 1	
												1
2.1 Understanding Performance and Opportunities											1 7	1
2.1.1 Identity areas, locations, or systems where energy analysis or upgrade activities have previously been performed	С,В	4									1 1	1
> Call out specifically the extent of past analysis or upgrade activity for each areas												1
 Create Out, Movin additional arteras to in analysis of upgrade opportunity Create Workscore for additional energy audits or analysis of onoortunities 											1 1	1
 Source consistence in administration of a state of a											1 1	1
>Workscope should consider load management and rate reviews as appropriate												1
>Workscope should include quantifying energy use and savings per system												1
2.1.2 Identify areas, locations or systems where no previous energy analysis or upgrade activities have been performed	C,B		4									1
>Create Workscope for additional energy audits or analysis of opportunities											1 1	1
>Workscope should consider operational, behavioral, instructional issues in addition to hardware issues												1
>Workscope should consider load management and rate reviews as appropriate												1
>vorriscope snould include quantitying energy use and savings per system 2.1.2. Identify and extent survival energy use and savings per system		CR										1
2.1.3 toentiny and select dualined resources (internal, unity partier, unity party, etc) to execute workscopes		С,В	СВ									1
2.1.4 Sofiedue and conduct energy baseline studies			0,5	С.В								1
> Identify Opportunities for Savings that meet investment criteria				_,_							1 1	1
> Investigate Available Utility Rebate & Support Programs											1 1	1
> Compile Business-Case Models for Project Justification											1 1	1
2.1.6 Use Baseline Study results to establish energy use / major system metrics					C,B-3.1.1, 9.	2.1					1 1	1
2.1.7 Use Baseline Study results to establish potential savings / energy system quantification						C,B-3.1.1, 9.	2.1				1 1	1
2.1.8 Compile multi-year capital plan for approved energy projects across the portfolio							С,В		. '		1 1	1
2.1.9 Obtain management approval, as needed, to implement the projects in the multi-year plan	I							C-1.1.6	4 '		1 1	1
4.2 Awareness and Training		<u> </u>	+	+	<u>├───</u>	<u> </u>	<u> </u>	1				·
4.2.1 Evaluate passed energy awareness activities and effectiveness	1	C,B	4			1		1	'	1	1 1	ł
4.2.2 Determine activities to implement as part of energy awareness campaign			C,B								1 1	1
>Newsletter Articles											1 1	1
>Intranet communication											1 1	1
>Visible signage											1 1	1
>Suggestion and recognition programs 4.2. Consider appropriate practice for minimum programs appropriation ideas from pap facilities staff 8 complexions				CR							1 1	1
4.2.5 Consider appropriate meeting for intro soluting energy conservation uses from includuities start & employees Solution and the part of existing operational sofety or subsidiary group meetings				С,В			4				1 1	1
 Sconsor an "Energy Challenge Day" for employees faculty, students 											1 1	1
>Engage existing employee environmental or activist groups											1 1	1
>Engage faculty and students through curriculum												1
>Suggestion boxes											1 1	1
4.2.4 Implement regular opportunities for soliciting ideas from staff					0.117						1 1	1
4.2.5 Report back to staff on ideas implemented and corresponding results							L					1
4.2.6 Consider recognition awards for contributed ideas that result in measurable improvements in energy conservation		1			1	1		L	, '	1		ł
4.2.7 roentry available sources of required awareness assistance and materials				1		1		C,B		 '	1 1	
4.2.0 Suireute and delivery of different activities to keep energy issues fresh				1		1		С,В		1 '	1 1	
4.2.9 Evaluate effectiveness of awareness campaign and adjust as necessary		1			1	1		1	'	1	С	
· · · · · · · · · · · · · · · · · · ·											, <u> </u>	ł
•			-	-			-	•				

One-2-Five Energy Recommended Actions	Timeline											
	Mo 1	Mo 2	Mo 3	Mo 4	Mo 5	Mo 6	Mo 7	Mo 8	Mo 9	Mo 10	Mo 11	Mo 12
			1			1			1			
A 30 Uniting A 31 Identify specific energy management tasks not receiving sufficient coverage	C											
4.3.1 Quantify specific receiption and a drive the outstanding even wangement tasks		С										
4.3.3 Establish an outline of the general skill sets required to manage the outstanding energy management tasks			СВ									
Make allowance for skill sets that can be provided or reinforced through training			0,2									
4.3.4 Investigate the possible sources of "high-quality, low-cost" personnel (BC Hwdro EM Program, Student Intern, etc.)				C.B								
4.3.5 Prepare justification and obtain approval for new resource				-,-	C-1.1.7							
4.3.6 Conduct candidate selection process						C.B		4				
>Prepare candidate selection criteria												
>Advertise available position												
>Schedule interviews with interested candidates	•											
>Select most qualified candidates												
4.3.7 Outline training requirements needed (if any) for new resource							C,B					
4.3.8 Identify sources of required training and deliver the training								C,B				
4.3.9 Assign to new resource energy management tasks not currently receiving sufficient coverage									С	4		
8.2 Procedures for Equipment Selection												
8.2.1 Identify sources of purchase guidelines for selection of general energy-using equipment (ie, computers, copiers, printers, etc)	C,B											
>Make adjustments or allowances as needed												
8.2.2 Review Facilities Mgmt equipment purchase guidelines based on life-cycle analysis for high energy-using equipment	C,B											
>Make adjustments or allowances as needed												
8.2.3 Identify the multiple equipment purchase points across the organization		С										
8.2.4 Identify the decision makers with coverage over those multiple purchase points			С									
8.2.5 Calculate the benefit of using energy efficiency guidelines to manage equipment purchases across the organization				C,B								
8.2.6 Present the business case to organization decision makers for adopting energy efficient purchase guidelines					С							
8.2.7 Document in official records energy efficient purchase guidelines of general and high energy-using equipment						С						
8.2.8 Devise a mechanism to ensure guidelines are followed (ie, paperwork audit trail)							С	<u> </u>				
8.2.9 Reinforce efficient guidelines with appropriate training and instruction for procurement personnel								С,В				
8.2.10 Work with the multiple organization purchase points to adjust guideline as needed over time											С	
Follow-Up One-2-Five Energy Session & Obtain Next Recommended Actions												
Jinney	-					Vet	a Odant					
						Yett	o Start	4				
C= lasks to be completed by CNC						in Pr	ogress	4				
P - Tasks to be completed in partnership with BC Hydro						Cor	nplete					
						Original	Schedule			RCI	hudro Ø	
						Revised	Schedule	4		201	.90.00	·
energy										00	wers	mart

powersmart

EMA Progress Report – Q4 CNC Energy Management System Action Plan 2009

AREA ID	1.1 – Demonstrated Leadership Commitment
AREA DESCRIPTION	Arrange for an executive-level officer to sign and sponsor an energy-specific policy or directive containing specific, quantitative goals and objectives for improving energy efficiency and/or reducing energy costs.
BACKGROUND	Executive Committee formed and Kick –off meeting held in January. PowerSmart Commitment letter signed and submitted.
START DATE	January 09
EST COMPLETION DATE	December 09
CURRENT STATUS	In Progress
ASSIGNED TO:	Peter Rowles , Burke Gulbranson Reassigned to Sustainability Committee – Dan Bradshaw, Gord Kerr, Randall Heidt – June 4 2009
TASK PROGRESS	 1.1.1 –Completed 1.1.2 –Completed 1.1.3 – Completed Draft Energy Policy reviewed, Sustainability Committee terms of reference reviewed. 1.1.4 – In progress – draft policy and terms of reference being redrafted for review and approval. Quantifiable goals are being based on audits and awareness survey which have been completed. 1.1.5 – President of College – John Bowman has been identified and has agreed to be Executive Sponsor 1.1.6 – Presentation of draft policy to executive sponsor was completed in November and is included in SEMP 1.1.7 – Communication of policy is rescheduled to New Year 1.1.8 – Delivery of Summary report made to President in November. SEMP prepared and presented in December
CHALLENGES	Funding – College is currently operating with a deficit budget. Chairman of Sustainability Committee (Dan Bradshaw) left the college at the end of August. Sustainability committee reconvened in November.

EMA Progress Report – Q4 CNC Energy Management System Action Plan 2009

AREA ID	2.1 – Understanding Performance and Opportunities
AREA DESCRIPTION	Establish the energy consumption and determine the potential energy savings for each major operational area or system.
BACKGROUND	Energy Audit completed by Prism Engineering in 2008 Mechanical systems audit completed by TFMCI in 2007
START DATE	January 2009
EST COMPLETION DATE	December 2009
CURRENT STATUS	In progress
ASSIGNED TO:	Peter Rowles
TASK PROGRESS	 2.1.1 -Complete 2.1.2 -Complete – Scope of work for feasibility study for power plant upgrades prepared and RFP issued June 3 09 2.1.3 - Complete – Energy Manager – Energy Advantage selected in December 08 to complete workscope 2.1.4 - Complete – Baseline data (2008) analyzed, Prism audit report and TFMI report reviewed, walk-thru audit to identify awareness opportunities completed 2.1.5 - List of potential projects identified and ranked for implementation. Preliminary Business cases prepared. Will be seeking PSECA funding for these projects. Applications due in September. 2.1.6 - Complete -Energy use and major system metrics being developed 2.1.7 - Complete Potential energy savings being quantified 2.1.8 - Capital Plan being developed 2.1.9 - Approval for capital plan expected in Q4. Proposed projects are approved to proceed subject to available funding.
CHALLENGES	Sources of funding an issue. Some smaller projects such as Gymnasium retrofit can be completed in short term. Applications for PSECA 3 and BC Hydro funding will be required for implementation.
EMA Progress Report – Q4 CNC Energy Management System Action Plan 2009

AREA ID	4.2 – Awareness and Training
AREA DESCRIPTION	Conduct basic energy-awareness activities within your organization, focusing on cost savings and environmental issues associated with energy use.
BACKGROUND	Sustainability Committee formed in the past. Currently no activities.
START DATE	January 2009
EST COMPLETION DATE	December 2009
CURRENT STATUS	In Progress
ASSIGNED TO:	Peter Rowles and Sustainability Committee – Dan Bradshaw Randal Heidt and
	Gord Kerr Randal Heidt is taking lead on staff and student awareness
TASK PROGRESS	 4.2.1 -Completed 4.2.2 -Completed – Energy Awareness walk-thrus completed in April and May. Results represented to Energy Committee and Sustainability Committee in May and June. Ideas for Newsletters, posters, surveys and internet communication were discussed 4.2.3 - Completed. To be included as part of Sustainability program 4.2.4 - Opportunities being discussed at monthly meetings 4.2.5 - Postponed until Q4 4.2.6 - Postponed until Q4 4.2.7 - Complete BC Hydro, Terasen Gas and Energy advantage are supplying materials for student awareness campaign. 4.2.8 - Launch currently planned for early in school year. Program launch at Student orientation on September 10 09. Draft communication plan prepared. 4.2.9 - Planned for early 2010
CHALLENGES	Securing internal resources to prepare awareness material and organize program launch by the fall.

EMA Progress Report – Q4 CNC Energy Management System Action Plan 2009

AREA ID	4.3 – Resourcing
AREA DESCRIPTION	Develop resource planning activities to ensure access to enough suitably skilled people to rectify energy waste in a timely manner.
BACKGROUND	Assessment of Power Plant resourcing issues covered in TFMCI report. Assessment of Energy Manager resource requirements identified in one to Five Assessment This task is largely completed with the selection of EAI as an energy manager.
START DATE	January 09
EST COMPLETION DATE	December 09
CURRENT STATUS	In Progress
ASSIGNED TO:	Peter Rowles, Burke Gulbranson
TASK PROGRESS	4.3.1Complete 4.3.2Complete 4.3.3Complete 4.3.4 Complete 4.3.5 Complete 4.3.6 Complete 4.3.7 Complete
CHALLENGES	

EMA Progress Report – Q4 CNC Energy Management System Action Plan 2009

AREA ID	8.2 Procedures for Equipment Selection
AREA DESCRIPTION	Document and communicate the purchase guidelines to be used for selection of energy efficient equipment.
BACKGROUND	The CNC management personnel seem to have a good understanding of potential energy efficiency guidelines to use in determining the potential replacement options of energy-using equipment. However, given the multiple purchase points throughout the organization for energy-using equipment, the recommendation in this area is to formalize these guidelines, which are currently applied on an informal basis, to ensure that their application happens more consistently across all relevant areas of the organization and on a more routine basis. A further improvement would include adopting purchasing guidelines based on life cycle cost analysis in the selection of significant or high energy-using equipment. Finally, the energy efficient guidelines established should be supported with a check-and-balance system in the form of protocols that ensure that the guidelines established are routinely applied at all level and by all personnel with authority to purchase energy-using equipment, particularly in areas with heavy energy use patterns.
START DATE	January 09
EST COMPLETION DATE	December 09
CURRENT STATUS	In Progress
ASSIGNED TO:	Peter Rowles, Trish Bichon
TASK PROGRESS	 8.2.1 –Complete 8.2.2 –Complete - have reviewed equipment purchases and made recommendations to include products list in BC Hydro's Product Incentive Program. Life cycle analysis being included as part of analysis for Power Plant upgrades and retrofit projects. 8.2.3 – Equipment purchases completed through procurement department 8.2.4 – Key decision makers are in facilities management and IT w.r.t. computers 8.2.5 – Reviewed BC Hydro's PIP program with procurement department and agreed to used products listed in program as standard for purchasing. Also considering direct purchase of natural gas based on recommendation form Energy Committee. 8.2.6 – Energy efficiency quidelines included in recent rfp for lighting equipment 8.2.7 – Mechanism (process) for tracking energy efficient purchases is being developed. 8.2.8 – In progress 8.2.9 – In Progress 8.2.10 – In Progress
CHALLENGES	

Energy Management Assessment (EMA) - Technical Projects

		1	Potential	Potential	Potential Total		Potential BC	Potential	Total	Projected		
			Flectrical	Other Fuel	Svas (Eneray +	Projected	Hydro	NRCan	Potential	Simple Pav		
Project Name	Description	Location	Svgs (kWh)	Svgs (GJ)	Operational)	Total Cost	Incentive	Incentive	Incentives	Back	Status	
5.2.1 - Comprehensive Lighting	Lighting	Main Campus	151,973	-	\$ 8,220) \$ 128,30	\$ 12,158	\$ 5,471	\$ 17,628	13.46	Investigating Incentives	
5.3.1 - Brink Classroom 1031 RT	Recommissioning	Brink Building	-	76	\$ 869	\$ 46)\$-	\$ -	\$ -	0.53	Investigating Incentives	
5.3.10 - Demand Control Ventilation	BAS	Main Campus	-	32	\$ 302	2 \$ 2,19)\$-	\$ 320	\$ 320	6.19	Investigating Incentives	
5.3.4 - Industrial Education Bu	BAS	Industrial Education Building	77	350	\$ 3,316	6 \$ 23,58)\$-	\$ 3,503	\$ 3,503	6.05	Investigating Incentives	
5.3.7 - Reduce Ventilation for Caf and Kit.	Recommissioning	Main Campus	34,412	365	\$ 4,678	3 \$ 53,36	\$ 2,753	\$ 4,889	\$ 7,642	9.77	Investigating Incentives	
5.4.1 Standby Mode for Brink RTUs	BAS	Main Campus	2,334	33	\$ 464	\$ 6,78	5 \$ 187	\$ 414	\$ 601	13.33	Investigating Incentives	
5.4.2 - Change VIV to VSD	HVAC	Main Campus	152,606	-	\$ 5,748	3 \$ 113,96	5 \$ 12,208	\$ 5,493	\$ 17,702	16.75	Investigating Incentives	
5.4.5 - Theatre Isolation	BAS	Main Campus	5,731	30	\$ 503	3 \$ 5,17	5 \$ 458	\$ 506	\$ 965	8.37	Investigating Incentives	
5.4.8 - Lighting Retrofits	Lighting	Main Campus	1,028,935	-	\$ 59,359	9 \$ 815,39	8 \$ 82,315	\$ 37,039	\$ 119,353	11.73	Investigating Incentives	
5.4.10 - Seating Area Lighting	Lighting				\$ 880)					Receiving quotes for supply and	
		Main Campus	23,364	-		\$ 40,00	\$ 1,869	\$ 841	\$ 2,710	42.37	installation	
5.5.1 Power Plant Upgrade	Chilers/Boilers				\$ 29,870)					RFP for feasibility study issued.	
											Study to be complete by Sept. 09	
		Power Plant	103,200	2,500		\$ 600,00	TBD	TBD	TBD	TBD		
Power Management Software			100,000	-		TBD	TBD	TBD	TBD	TBD	Study Complete	
			1,602,632	3,386	\$ 114,209	\$1,189,21	3 \$ 111,948	\$ 58,476	\$ 170,424	8.92		
Approved Projects							1			-		
					Est Total Svgs		Est BC					
			Est Electrical	Est Other	(Energy +	Est Total	Hydro			Simple Pay		
Project Name		Description	Svgs (kWh)	Fuel Svgs	Operational)	Cost	Incentive			Back	Next Steps	Est Start Date
5.3.8 - Align Operating Hours of AHU-720	Recommissioning	Main Campus	20,593	115	\$ 1,862	2 \$ 11)\$-	\$ -	\$ -	0.06		Dec-09
5.3.6 - Holiday Scheduling	Recommissioning	Main Campus	24,519	332	\$ 4,066	5 \$ 1,38)\$-	\$-	\$-	0.34		Dec-09
5.3.11 - Insulate Domestic HW Piping	Mechanical	Main Campus	-	17	\$ 160) \$ 1,68)\$-		\$ -	10.50		Dec-09
5.3.9 - Zone Isolation for Block 700 1st floc	or Recommissioning	Main Campus	2,111	111	\$ 1,132	2 \$ 2,76)		\$ -	2.44		Dec-09
5.3.2 - Full Recirculation in Un.	Recommissioning	Main Campus	-	66	\$ 627	7 \$ 1,38)		\$ -	2.20	4	Dec-0
5.4.9 - Gym Lighting Upgrade	Lighting	Main Campus	26,551	-	\$ 1,000) \$ 35,00) \$ 2,124	\$ 956	\$ 3,080	31.92		
	1		17 223	6/1	7.84	7 731)	1		0.03		

Projects In Progress														
Project Name		Description	Electrical Svgs (kWh)	Other Fuel Svgs	Total Svgs (Energy + Operational)	Total Cost	BC Hydro Incentive			Simple Pay Back	Status	Date Started	% Complete	Projected Completion Date
Behavioural/ Education Programs (If Applica	able)													
				Potential										Projected
			Electrical	Other Fuel	Total Svgs (Energy	BC Hydro						Date	%	Completion
Project Name	Description	Location	Svgs (kWh)	Svgs (GJ)	+ Operational)	Incentive	Objectives					Started	Complete	Date
Energy Awareness	Awareness	Main Campus	200,000	870	\$ 18,700	TBD	Objective is re	educe energy u	se by 3% throu	gh student and	staff awareness	Fall 09	0	2010
Natural Gas Procurement	Procurement	Main Campus			\$ 20,000		Convert to dire	ect purchase of	f natural gas fro	m system gas.		Fall 09	0	
Purchasing procedures	Procurement	Main Campus	TBD	TBD	TBD		Standardize o	n energy efficie		9-Jun	50	Mar-10		

6. APPENDIX B – BASELINE DETAILS

7. APPENDIX C – METRIX® ANALYSIS RESULTS

Main Campus (Natural Gas Meter)

Brink Building (Electrical Meter)

Brink Building (Natural Gas Meter)

Nicholson Building (Electrical Meter)

Nicholson Building (Natural Gas Meter)

Basesline/Actual Electricity kWh for Brink Building

Baseline/Actual Electricity kWh for Nicholson Building

Baseline/Actual Natural Gas for Main Campus

Baseline/Actual Natural Gas for Brink Building

Baseline/Actual Natural Gas for Nicholson Building

8. APPENDIX D – ASSET REGISTRY

PRISM ENGINEERING LTD. Descriptions of Parameters used for Mechanical Analysis

#200 - 4021 East Hastings Street, Burnaby, BC V5C 2J1 • Telephone: (604) 298-4858 • Fax: (604) 298-8143 • www.prismengineering.com

Parameter Name	Parameter Description	Abbrev	Default Value
TAG	Equipment Tag Number or Designator	TAG	None
Тад Туре	Equipment Designator Type (See Tag type Table)	Tag Type	None
Part Description	Detail Equipment Description		
Energy End Use	Energy End Use Type. System level parameter only.		
System Name	System Designator or Tag Name or short descriptor.		
Service Area Name	Description of Floor Area Serviced by Equipment		
Make	Equipment Manufacturer		
Model	Equipment Model Number, usually from the nameplate.		
Serial Num	Equipment Serial Number, usually from the nameplate.	Serial Num	None
Fuel Type	Type of Fuel i.e. Natural Gas, Electricity, Propane, or Oil		Electric
Rating	Equipment Energy Rating or Capacity	Rating	0
Units	Units of <i>output</i> energy for motors (hp, kW) or input energy for burners (MBH)		hp
Quantity	Number of this type of equipment (e.g. for PCs and Vending Machines can be > 0)	Qty	1
Nameplate FLA	Full Load Amperage Draw from equipment nameplate.	FLA	0
Measured Amps	Actual Equipment Current Draw from previous measurement or our readings.	MA	0
Voltage	Equipment Nominal Voltage (Required if Amps are available)	Voltage	115
Num Phases	Number of Phases (1 or 3). Used in calculation with Measured Amps	#Ph	1
Frequency Hz	Frequency (50 or 60) Not used in calculations.		60
Power Factor	Equipment Power Factor (default 0.85 for motors)	PF	0.85
Controls	Controller Type i.e. Programmable or Manual or DDC		
Design Flow (CFM/GPM)	Fan or pump design flow rate from specifications or based on horsepower estimate. Ventilation calculations use flow value if Outdoor Air is greater than 0%. The calculation uses a load factor of 0.85 x design flow.		0
Measured Flow (CFM/GPM)	Fan or Pump Measured flow rate from previous measurement or our readings. Ventilation calculations use measured flow value if Outdoor Air is greater than 0%. Measured Flow takes priority over Design Flow and is used at 100% load factor.		0
OA percent	Outdoor air as percent of total fan airflow. Used for ventilation calculations.	%OA	0%
Load Factor	Load Factor or % of Nameplate Rating under normal operation.	Mtr_LF	80%
% System On Factor	% of Time System Is On e.g. Boiler on 10 minutes/hour = $1/6 = 16.7\%$	SOF	100%
Demand Diversity	Percent of Peak Electrical Demand over an annual period. For example, if a 200 kW chiller is operated at peak load 4 months per year, then the diversity would be 4/12 x 100% or 33%. Factor is used for electrical cost savings.		100%
Efficiency (%)	Equipment Efficiency in Percent e.g 80% for Motor > 1 hp, 100% for heater	Eff	80%
System AFUE (%)	Gas Appliance Annual Fuel Utilization Efficiency (Default 80% for Commercial Boiler). Used mainly for calculation of Ventilation energy for supply fans.	System AFUE	80%
Operating LF	Operating Factor applied to account for reduced load from a flow control device such as a variable speed drive. It is equivalent to a single point on an operating profile.	Op_LF	100%
Flow Control	Method of Flow Control such as an Inlet Vane or a Variable Speed Drive		Full Flow
Operating Profile	Typical Equipment Operating profile estimated over an annual period based on hours of operation at different flow rates.		Constant Load
% Heat Recovery	Heat Recovery Factor from existing or new HRV or Run Around Loop in %.	% HR	0%
System Description	Brief System Description.		

Equipment and System Tag Type Listing

Code Description

3WV	3 Way Valve	AC	Air Compressor
ACC	Air Compressor Controls	ACD	Air Compressor Dryer
ACL	Air Cleaner	ACU	Air Conditioning Unit
AHU	Air Handling Unit	В	Boiler
BFP	Back Flow Preventer	BL	Aeration Blower
С	Clock	CD	Clothes Dryer
CHC	Centrifugal Chiller	CHL	Chairlift or Gondola Motor Drive
CHR	Reciprocating Chiller	CHRT	Rotary Chiller
CHS	Screw Chiller	COP	Copiers
СР	Control Panel	CTW	Cooling Tower
CV	Control Valve	DC	Dust Collector
DHWT	Domestic Hot Water Tank	DRY-E	Electric Drier
DRY-G	Gas Drier	DW	Dishwasher
Е	Elevator	EBB	Electric Baseboard Heater
EC	Electric Coil	EF	Exhaust Fan
EH	Exhaust Hood	EHTR	Portable Electric Heater
EIRH	Electric Infrared Radiant Heater	ELPS	Emergency Light Power Sup
EP	Electrical Panel	F	Furnace
FA	Fire Alarm System	FAN	Fan
FB	Furnace Blower	FC	Fan Coil Unit
FCT	Foam Cutter for Primary Effluent Treatment	FD	Forced Draft Fan
FEF	Fume Hood Exhaust Fan	FF	Force Flow
FH	Fume Hood	FS	Flow Switch
GC	Growth Chamber	GIRH	Gas Infrared Radiant Heating
HC	Heating Coil	HP	Packaged Heat Pump System
HRV	Heat Recovery Ventilator	HTR	Hot Water or Other Electric Heater
HUM	Humidifier	HV	Heater Ventilator
HWH	Hot Water Heat	HWT	Hot Water Tank
IF	In Line Fan	IM	Ice Machine
LCP	Light Control Panel	LP	Light Panel
LTG	Lighting	MUA	Make-up Air Unit
MX	Mixer	NSB	Night Set Back Temp Contr
Р	Pump	PA	Public Address System
PC	Pneumatic Controls	PCS	Personal Computers
PLUG	General Plug Load not including PCs	PRN	Printers
PRV	Pressure Regulator Valve	PW	Power Washer
RC	Refrigeration Compressor	REF	Refrigeration System (Non Walk-in)
RF	Return Fan	RTU	Roof Top Unit
RV	Relief Valve	S	Stove
SF	Supply Fan	SP	Sprinkler Control Panel

Equipment and System Tag Type Listing

Code Description

SPV	Sprinkler Valve	STP	Stand Pipe
SV	Safety Valve	SWG	Switch Gear
SWP	Switch Panel	SWU	Switch Unit
Т	Transformer	TOOLS	Shop Tools and Equipment
UDF	Undefined	UH	Unit Heater
UV	Unit Ventilator	UV-DX	Unit Ventilator with Hot Water and DX Coil for Cooling
UV-G	Unit Ventilator with Gas Fired Heating	VAV	Variable Air Volume Box
VEND	Vending Machines	VLV	Valve
VP	Vacuum Pump	WASH	Washing Machine
WCL	Wheel Chair Lift	WF	Walk in Freezer
WFW	Wire Feed Welder	XCHGR	Heat Exchanger
XT	Expansion Tank	ZD	Mechanical Zone Damper
SQ	Scientific Equipment	UPS	Uninterruptible Power Supply
CH-ABS	Absorption Chiller	GB	Gas Burner
CU	Condensing Unit	GEN	Generator

Client:	ient: College of New Caledonia - (revised 2008) Building Nam												ssroom									Client I	D		326	
					1	Motor	Data							Ex	cisting Ele	ectrical C	onditions					Fans,Pu Compres	mps ssors	E	xisting Conditi	Fuel ons
TAG Part Desc	ription	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System Name: A	HU-1																									
AHU-1-S SUPPLY F	AN	1	15. hp	575	3	0	0	80%	85%	86%	4	10.4	Constant Load	FF	100%	100%	10.4	4,732	100%	4,732	49,257	25,000	0.00	10%	0%	0.0
System Name: L	tem Name: DHW																									
HEATER DOM HW	HEATER (SUMMER)	1	40. Kw	208	3	0	0	100%	85%	100%	3	40.0	Constant Load	FF	100%	100%	40.0	2,015	20%	403	16,117	0	0.00	0%	0%	0.0
System Name: E	FS																									
EF-1		1	-	0	0	0	0	80%	85%	100%	-	0.0	Constant Load	FF	100%	100%	0.0	4,732	100%	4,732	0	0	0.00	0%	0%	0.0
System Name: L	TG_PR2008265_BL	DG212	1																							
LTG-PO Retrofit Ltg	Updated 24 Oct 08	1	25.3 kW	120	1	0	0	100%	95%	100%	3	25.3	Constant Load	FF	100%	100%	25.3	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PO Retrofit Ltg	Updated 24 Oct 08	1	25.3 kW	120	1	0	0	100%	95%	100%	3	25.3	Constant Load	FF	100%	100%	25.3	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PRE Existing Lto	g Updated 24 Oct 08	1	55.1 kW	120	1	0	0	100%	95%	100%	3	55.1	Constant Load	FF	100%	100%	55.1	8,760	38%	3,341	183,920	0	0.00	0%	0%	0.0
LTG-PRE Existing Ltg	g Updated 24 Oct 08	1	55.1 kW	120	1	0	0	100%	95%	100%	3	55.1	Constant Load	FF	100%	100%	55.1	8,760	38%	3,341	183,920	0	0.00	0%	0%	0.0
System Name: P	LUG																									
PLUG		23	1. kW	115	1	0	0	100%	<mark>85%</mark>	100%	3	23.0	Constant Load	FF	100%	100%	23.0	8,760	19%	1,685	38,755	0	0.00	0%	0%	0.0
Building Totals:												234.0					234.0				471,969					0.0

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

	ing Equipment																									
Clien	t: College of New	w Caledo	nia - (revi	ised 2	2008)		Bu	ilding	Nar	ne:	1000 John	A. Brin	k									Client I	D	3	26	
					M	lotor	Data							Ex	isting Ele	ctrical Con	ditions					Fans,Pi Compre	umps ssors	Ex	tisting F Condition	ruel ns
TAG	Part Description	Otv	Ratin	Volt.	Phase	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full De Power (Avg emand (kW) S	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured	Design	% OA	% HR	Fuel Energy (G.I)
System	Name: DE	20	50	S	S					55	hittindu		- 0			100000					(cjina gpin	cjini 8pm			(30)
Dystem	Ohin extractor	4		400		0	<u> </u>	0.00/	050/	0.00/	0	2.4	Constant Lood		4000/	4000/	2.4	0.745	400/	700	0.004	0	0.00	00/	00/	0.0
	Chip extractor Sawdust extractor	1	5. HP	460 575	3	0	6.2 0	80%	85%	83%	2	3.4 14 Q	Constant Load	FF	100%	100%	3.4 14 Q	6,715 6,715	12%	799	2,684	0	0.00	0%	0%	0.0
		•	20.110	575		0	0	0070	0070	0070		14.5	Constant Load		10070	10070	14.5	0,710	1270	100	11,020	0	0.00	070	070	0.0
System	Name: DWH																									
DHW		2	55. MBH	0	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	28%	2,435	0	0	0.00	0%	0%	282.4
System	Name: EBH																									
EBBH-1	Electric baseboard heating	10	1. kW	115	1	0	0	100%	85%	100%	3	10.0	Constant Load	FF	100%	100%	10.0	8,760	8%	701	7,008	0	0.00	0%	0%	0.0
System	Name: EFS		-																							
EF-1	Auto repair shop	1	1. hp	575	3	3	1.5	80%	85%	77%	1	2.7	Constant Load	FF	100%	100%	2.7	2,652	100%	2,652	7,184	0	0.00	0%	0%	0.0
EF-10	Electrical Shop	1	325. Watt	115	1	4	4.9	80%	85%	80%	1	0.4	Constant Load	FF	100%	100%	0.4	2,600	100%	2,600	966	0	480.99	0%	0%	0.0
EF-11	Janitors Closet	1	48. Watt	115	1	0	0.43	80%	85%	80%	1	0.0	Constant Load	FF	100%	100%	0.0	8,760	40%	3,504	144	0	197.06	0%	0%	0.0
EF-12	Electrical 161	1	405. Watt	115	1	0	3.77	80%	85%	80%	2	0.3	Constant Load	FF	100%	100%	0.3	2,600	100%	2,600	767	0	671.69	0%	0%	0.0
EF-13	Electrical 161	1	405. Watt	115	1	2	3.77	80%	85%	80%	1	0.2	Constant Load	FF	100%	100%	0.2	2,600	100%	2,600	610	0	671.69	0%	0%	0.0
EF-2	Electrical Fab Shop	1	.3 np	115 575	1	5	4.1 1.5	80%	85%	80%	1	0.4	Constant Load	FF	100%	100%	0.4	2,600	100%	2,600	1,151 2,641	0	1,500.18	0%	0%	0.0
EF-4	Auto Exhaust (tail pipe)	1	5. hp	575	3	0	5.8	80%	85%	82%	2	3.9	Constant Load	FF	100%	100%	3.9	2,000	100%	2,000	10.417	0	7.500.00	0%	0%	0.0
EF-5	Washrooms	1	.3 hp	115	1	5	5.5	80%	85%	80%	1	0.4	Constant Load	FF	100%	100%	0.4	2,600	100%	2,600	1,151	0	1,099.71	0%	0%	0.0
EF-6	Tool Storage	1	.3 hp	115	1	4	5	80%	85%	80%	1	0.4	Constant Load	FF	100%	100%	0.4	2,652	100%	2,652	1,151	0	500.06	0%	0%	0.0
EF-7	Janitors closet	1	53. Watt	115	1	1	0.62	80%	85%	80%	1	0.1	Constant Load	FF	100%	100%	0.1	8,760	30%	2,628	154	0	103.83	0%	0%	0.0
EF-8	Ceiling	1	48. Watt	115	1	0	0.43	80%	85%	80%	1	0.0	Constant Load	FF	100%	100%	0.0	8,760	30%	2,628	116	0	<u>197.06</u>	0%	0%	0.0
EF-9	Café	1	129. Watt	115	1	2	1.7	80%	85%	80%	1	0.1	Constant Load	FF	100%	100%	0.1	8,760	30%	2,628	385	0	133.49	0%	0%	0.0
System	<i>Name: LTG_PR2008265_1</i>	BLDG213	7																							
LTG-PO	Retrofit Ltg Updated 22 Oct 08	1	<mark>57.5 kW</mark>	120	1	0	0	100%	95%	100%	3	57.5	Constant Load	FF	100%	100%	57.5	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PR	E Existing Ltg Updated 22 Oct 08	1	84.6 kW	120	1	0	0	100%	95%	100%	3	84.6	Constant Load	FF	100%	100%	84.6	8,760	27%	2,395	202,576	0	0.00	0%	0%	0.0
System	Name: MUA-1																									
GB_MU	A Gas Burner for MUA-1	1	1000. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	2,652	10%	278	0	0	0.00	0%	0%	293.6
SF_MUA	A- Supply Fan for MUA-1	1	7.5 hp	575	3	6	7.7	80%	85%	83%	1	5.2	Constant Load	FF	100%	100%	5.2	2,652	100%	2,652	13,919	6,531	7,000.00	100%	0%	0.0
System	Name: MUA-2																									
GB_MU	A Gas Burner for MUA-2	1	1000. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	2,600	12%	312	0	0	0.00	0%	0%	329.0
SF_MUA	A- Supply Fan for MUA-2	1	7.5 hp	575	3	7	7.7	80%	85%	83%	1	6.2	Constant Load	FF	100%	100%	6.2	2,600	100%	2,600	16,177	7,842	7,000.00	100%	0%	0.0
System	Name: MUA-3																									
GB_MU	A Gas Burner for MUA-3	1	1000. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	2,600	12%	299	0	0	0.00	0%	0%	315.3
SF_MUA	A- Supply Fan for MUA-3	1	7.5 hp	575	3	7	7.7	80%	85%	83%	1	5.8	Constant Load	FF	100%	100%	5.8	2,600	100%	2,600	15,011	7,340	7,000.00	100%	0%	0.0
System	Name: PLUG																									
PLUG	Plug loads	14	1. kW	115	1	0	0	100%	<mark>85%</mark>	100%	3	14.0	Constant Load	FF	100%	100%	14.0	8,760	42%	3,721	52,089	0	0.00	0%	0%	0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Prism Engineering Ltd.

Client: College of New Cal	edonia -	(revised	d 20	08)		Bu	ilding	g Nai	ne:	1000 Joh	n A. Brin	k									Client I	D	2	326	
				M	otor	Data							E:	xisting Eld	ectrical Cor	nditions					Fans,Pı Compre	mps ssors	Ex (visting F Conditio	'uel ns
TAG Part Description	Qty Rating		Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full D Power	Avg Demand (kW) S	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System Name: RTU-01																									d
CF-RTU- Condenser Fan for RTU-1	1 .3 hp	57	75	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU- Duct heater for RTU-1	1 5. Kw	57	75	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-1	1 78. M	BH 12	20	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	23.0
RC_RTU- Refrigeration Compressor for RTU-1	1 3.2 kV	V 57	75	3	0	0	80%	85%	80%	3	3.2	Constant Load	FF	100%	100%	3.2	650	25%	163	518	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-1	1 1.5 hp	5	75	3	1	1.9	80%	85%	77%	1	0.7	Constant Load	FF	100%	100%	0.7	2,600	100%	2,600	1,827	1,166	1,197.18	10%	0%	0.0
System Name: RTU-02																									
CF-RTU- Condenser fan for RTU-2	1 .3 hp	57	75	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH-RTU- Duct Heater for RTU-2	1 5. Kw	57	75	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-2	1 78. M	BH 12	20	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	23.0
RC_RTU- Refrigeration Compressor for RTU-2	1 3.2 kV	V 57	75	3	0	0	80%	85%	80%	3	3.2	Constant Load	FF	100%	100%	3.2	650	25%	163	518	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-2	1 1.5 hp	57	75	3	1	1.9	80%	85%	77%	1	0.8	Constant Load	FF	100%	100%	0.8	2,600	100%	2,600	2,003	1,270	1,197.18	10%	0%	0.0
System Name: RTU-03																									
CF-RTU- Condenser fan for RTU-3	1 .3 hp	57	75	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH-RTU- Duct Heater for RTU-3	1 5. Kw	57	75	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-3	1 78. M	BH 12	20	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	23.0
RC_RTU- Refrigeration Compressor for RTU-3	1 3.7 kV	V 57	75	3	0	0	80%	85%	80%	3	3.7	Constant Load	FF	100%	100%	3.7	650	25%	163	605	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-3	1 1.5 hp	57	75	3	1	1.9	80%	85%	77%	1	0.8	Constant Load	FF	100%	100%	0.8	2,600	100%	2,600	2,113	1,370	1,197.18	10%	0%	0.0
System Name: RTU-04																					-				
CF-RTU- Condenser fan for RTU-4	1 .3 hp	57	75	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-4	1 5. Kw	57	75	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-4	1 78. M	BH 12	20	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	23.0
RC_RTU- Refrigeration Compressor for RTU-4	1 4.3 kV	V 57	75	3	0	0	80%	85%	80%	3	4.3	Constant Load	FF	100%	100%	4.3	650	25%	163	691	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-4	1 1.5 hp	57	75	3	1	1.9	80%	85%	77%	1	0.8	Constant Load	FF	100%	100%	0.8	2,600	100%	2,600	2,025	1,640	1,197.18	10%	0%	0.0
System Name: RTU-05																									
CF-RTU- Condenser fan for RTU-5	1 .3 hp	57	75	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-5	1 5. Kw	57	75	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-5	1 78. M	BH 12	20	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	23.0
RC_RTU- Refrigeration Compressor for RTU-5	1 3.7 kV	V 57	75	3	0	0	80%	85%	80%	3	3.7	Constant Load	FF	100%	100%	3.7	650	25%	163	605	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-5	1 1.5 hp	57	75	3	1	1.9	80%	85%	77%	1	0.8	Constant Load	FF	100%	100%	0.8	2,600	100%	2,600	2,113	1,484	1,197.18	10%	0%	0.0
System Name: RTU-06																									
CF-RTU- Condenser fan for RTU-6	1 .3 hp	57	75	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-6	1 5. Kw	57	75	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-6	1 78. M	BH 12	20	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	23.0
RC_RTU- Refrigeration Compressor for RTU-4	1 5.5 kV	V 57	75	3	0	0	80%	85%	80%	3	5.4	Constant Load	FF	100%	100%	5.4	650	25%	163	886	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-4	1 1.5 hp	57	75	3	1	1.9	80%	85%	77%	1	1.0	Constant Load	FF	100%	100%	1.0	2,600	100%	2,600	2,575	2,180	1,197.18	10%	0%	0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client ID

Client: College of New Caledonia - (revised 2008) Buildi								g Na	me:	1000 Joh	n A. Brin	k									Client I	D	<u> </u>	326	
				1	Motor	Data							Ex	cisting Ele	ectrical Co	ondition	\$				Fans,Pu Compres	mps ssors	ג <i>ב</i> (cisting F Conditio	ruel ns
TAG Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System Name: RTU-07																									
CF-RTU- Condenser fan for RTU-7		1 .3 hp	575	3	0	0.9	80%	6 85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	1.008	30%	302	184	0	0.00	0%	0%	0.0
DH-RTU- Duct Heater for RTU-7		1 5. Kw	575	3	0	0	100%	<mark>6 85%</mark>	100%	3	5.0	Constant Load	FF	100%	100%	5.0	3,100	25%	775	3,875	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-7		1 78. MBH	120	1	0	0	80%	6 85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	3,100	16%	496	0	0	0.00	0%	0%	40.8
RC_RTU- Refrigeration Compressor	for RTU-7	1 3.7 kW	575	3	0	0	80%	<mark>6 85%</mark>	80%	3	3.7	Constant Load	FF	100%	100%	3.7	1,008	25%	252	937	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-7		1 1.5 hp	575	3	1	1.9	80%	6 85%	77%	1	0.8	Constant Load	FF	100%	100%	0.8	4,030	100%	4,030	3,207	1,547	1,197.18	10%	0%	0.0
System Name: RTU-08										-											-				
CF-RTU- Condenser fan for RTU-8		1 .3 hp	208	1	0	1.9	80%	<mark>6 85%</mark>	55%	2	0.3	Constant Load	FF	100%	100%	0.3	553	30%	166	45	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-8		1 5. Kw	575	3	0	0	100%	6 85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,700	25%	425	2,125	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-8		1 125. MBH	120	1	0	0	80%	<mark>6 85%</mark>	76%	-	0.0	Constant Load	FF	100%	100%	0.0	1,700	16%	272	0	0	0.00	0%	0%	35.8
RC_RTU- Refrigeration Compressor	for RTU-8	1 6.6 Kw	600	3	0	0	80%	6 85%	80%	3	6.6	Constant Load	FF	100%	100%	6.6	553	25%	138	907	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-8		1 .8 hp	600	3	2	0	80%	<mark>6 85%</mark>	75%	1	1.9	Constant Load	FF	100%	100%	1.9	2,210	100%	2,210	4,139	2,321	945.00	10%	0%	0.0
System Name: RTU-09																									
CF-RTU- Condenser fan for RTU-9		1 .3 hp	208	1	0	1.9	80%	6 85%	55%	2	0.3	Constant Load	FF	100%	100%	0.3	1,750	30%	525	141	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-9		1 5. Kw	575	3	0	0	100%	<mark>6 85%</mark>	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-9		1 125. MBH	120	1	0	0	80%	6 85%	76%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	16%	280	0	0	0.00	0%	0%	36.9
RC_RTU- Refrigeration Compressor	for RTU-9	1 6.6 Kw	600	3	0	0	80%	<mark>6 85%</mark>	80%	3	6.6	Constant Load	FF	100%	100%	6.6	650	25%	163	1,068	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-9		1 .8 hp	600	3	2	0	80%	6 85%	75%	1	2.0	Constant Load	FF	100%	100%	2.0	2,600	100%	2,600	5,099	2,247	945.00	10%	0%	0.0
System Name: RTU-10																									
CF-RTU- Condenser fan for RTU-10)	1 .3 hp	208	1	0	1.9	80%	<mark>6 85%</mark>	55%	2	0.3	Constant Load	FF	100%	100%	0.3	650	30%	195	52	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-10	,	1 5. Kw	575	3	0	0	100%	6 85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-10		1 125. MBH	120	1	0	0	80%	<mark>6 85%</mark>	76%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	20%	350	0	0	0.00	0%	0%	46.1
RC_RTU- Refrigeration Compressor	for RTU-10	1 6.6 Kw	600	3	0	0	80%	6 85%	80%	3	6.6	Constant Load	FF	100%	100%	6.6	650	25%	163	1,068	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-10		1 .8 hp	600	3	2	0	80%	<mark>6 85%</mark>	75%	1	1.9	Constant Load	FF	100%	100%	1.9	2,600	100%	2,600	4,869	2,321	945.00	10%	0%	0.0
System Name: RTU-11																									
CF-RTU- Condenser fan for RTU-11		1 .3 hp	575	3	0	0.9	80%	6 85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-11		1 5. Kw	575	3	0	0	100%	<mark>6 85%</mark>	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-11		1 78. MBH	120	1	0	0	80%	6 85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	20%	350	0	0	0.00	0%	0%	28.8
RC_RTU- Refrigeration Compressor	for RTU-11	1 4.3 kW	575	3	0	0	80%	<mark>6 85%</mark>	80%	3	4.3	Constant Load	FF	100%	100%	4.3	650	25%	163	691	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-11		1 1.5 hp	575	3	1	1.9	80%	6 85%	77%	1	0.8	Constant Load	FF	100%	100%	0.8	2,600	100%	2,600	2,069	1,560	1,197.18	10%	0%	0.0
System Name: RTU-12																									
CF_RTU- Condenser fan for RTU-12	<u>,</u> ,	1 .3 hp	575	3	0	0.9	80%	<mark>6 85%</mark>	65%	2	0.6	Constant Load	FF	100%	100%	0.6	<u>650</u>	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU- Duct Heater for RTU-12		1 5. Kw	575	3	0	0	100%	6 85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU- Gas burner for RTU-12		1 78. MBH	120	1	0	0	80%	<mark>6 85%</mark>	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	20%	350	0	0	0.00	0%	0%	28.8
RC_RTU- Refrigeration Compressor	for RTU-12	1 3.2 kW	575	3	0	0	80%	6 85%	80%	3	3.2	Constant Load	FF	100%	100%	3.2	650	25%	163	518	0	0.00	0%	0%	0.0
SF_RTU- Supply fan for RTU-12		1 1.5 hp	575	3	1	1.9	80%	<mark>6 85%</mark>	77%	1	0.7	Constant Load	FF	100%	100%	0.7	2,600	100%	2,600	1,739	1,250	1,197.18	10%	0%	0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client ID

Clien	t: College of New Cale	donia - (re	vised 2	008)		Bu	ilding	g Nar	ne:	1000 Joh	n A. Brin	lk									Client I	D		326	
				Ì	Motor	Data							Ex	cisting Eld	ectrical C	onditions					Fans,Pu Compre	emps ssors	E	xisting F Conditio	'uel ns
TAG	Part Description Q	<i>Rating</i>	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW) S	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	Name: RTU-13																								
CF-RTU	- Condenser fan for RTU-13	1 .3 hp	575	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU	J- Duct Heater for RTU-13	1 5. Kw	575	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTL	J- Gas burner for RTU-13	1 78. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	20%	350	0	0	0.00	0%	0%	28.8
RC_RTU	J- Refrigeration Compressor for RTU-13	1 5.5 kW	575	3	0	0	80%	85%	80%	3	5.4	Constant Load	FF	100%	100%	5.4	650	25%	163	886	0	0.00	0%	0%	0.0
SF_RTU	J- Supply fan for RTU-13	1 1.5 hp	575	3	1	1.9	80%	85%	77%	1	1.0	Constant Load	FF	100%	100%	1.0	2,600	100%	2,600	2,553	2,012	1,197.18	10%	0%	0.0
System	Name: RTU-14																								
CF-RTU	- Condenser fan for RTU-14	1 .3 hp	575	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU	J- Duct Heater for RTU-14	1 5. Kw	575	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTU	J- Gas burner for RTU-6	1 130. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	20%	350	0	0	0.00	0%	0%	48.0
RC_RTL	J- Refrigeration Compressor for RTU-14	1 11.7 kW	120	1	0	0	80%	85%	80%	3	11.6	Constant Load	FF	100%	100%	11.6	650	25%	163	1,893	0	0.00	0%	0%	0.0
SF_RTU	I- Supply fan for RTU-14	1 3. hp	575	3	3	3.44	80%	85%	80%	1	2.4	Constant Load	FF	100%	100%	2.4	2,600	100%	2,600	6,317	3,775	3,803.43	10%	0%	0.0
System	Name: RTU-15																								
CF-RTU	- Condenser fan for RTU-15	1 .3 hp	575	3	0	0.9	80%	85%	65%	2	0.6	Constant Load	FF	100%	100%	0.6	650	30%	195	119	0	0.00	0%	0%	0.0
DH_RTU	J- Duct Heater for RTU-15	1 5. Kw	575	3	0	0	100%	85%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	1,750	25%	438	2,188	0	0.00	0%	0%	0.0
GB_RTL	J- Gas burner for RTU-15	1 78. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,750	20%	350	0	0	0.00	0%	0%	28.8
RC_RTU	J- Refrigeration Compressor for RTU-15	1 4.3 kW	575	3	0	0	80%	85%	80%	3	4.3	Constant Load	FF	100%	100%	4.3	650	25%	163	691	0	0.00	0%	0%	0.0
SF_RTU	I- Supply fan for RTU-15	1 1.5 hp	575	3	4	1.9	80%	85%	77%	1	3.0	Constant Load	FF	100%	100%	3.0	2,600	100%	2,600	7,836	1,543	1,197.18	10%	0%	0.0
System	Name: ST																								
ET	Electric tools	18 1. kW	208	3	0	0	60%	85%	100%	3	10.8	Constant Load	FF	100%	100%	10.8	2,600	40%	1,040	11,232	0	0.00	0%	0%	0.0
WT	Woodwork tools	54 1. kW	208	3	0	0	60%	85%	100%	3	32.4	Constant Load	FF	100%	100%	32.4	2,600	40%	1,040	33,696	0	0.00	0%	0%	0.0
System	Name: UAF																								
AUFE	Unaccounted electric equipment	5 1. kW	115	1	0	0	100%	100%	100%	3	5.0	Constant Load	FF	100%	100%	5.0	8,760	<mark>90%</mark>	7,884	39,420	0	0.00	0%	0%	0.0
UAFG	Unaccounted for Gas	1 1000. MBI	H 0	1	0	0	80%	85%	60%	-	0.0	Constant Load	FF	100%	100%	0.0	6,715	2%	118	0	0	0.00	0%	0%	124.0
Buildir	ng Totals:										438.0					438.0				531,699					1,805.2

Client ID

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Clien	t: College of New	Caledo	nia - (rev	ised 2	2008)		Bu	ildin	g Na	me:	1200 Res	idences										<i>Client</i>	ID		326	
					Ì	Motor	Data							Ex	xisting El	ectrical C	Condition	5				Fans,P Compre	umps essors	E	xisting Conditi	Fuel ons
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	⁷ Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
Systen	n Name: GAS FURN																									
FUR	Gas Furnace	2	100. MBH	115	1	0	0	80%	6 85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	37%	3,197	0	0	0.00	0%	0%	674.2
Systen	n Name: HC Units																									
<mark>Basebo</mark> HC Unit	ar Electric Baseboard heating t Heating Cooling Units	<mark>88</mark> 94	<mark>1.5 kW</mark> 1.9 kW	115 208	1 1	0 0	0 3.2	<mark>100%</mark> 100%	<mark>6 85%</mark> 6 85%	<mark>100%</mark> 80%	3 2	<mark>132.0</mark> 53.2	Constant Load Constant Load	FF FF	<mark>100%</mark> 100%	<mark>100%</mark> 100%	<mark>. 132.0</mark> . 53.2	<mark>5,372</mark> 8,760	<mark>20%</mark> 10%	<mark>1,074</mark> 876	<mark>141,828</mark> 46,587	0 0	0.00 0.00	<mark>0%</mark> 0%	<mark>0%</mark> 0%	<mark>0.0</mark> 0.0
Systen	n Name: LTG_PR2008265_BL	.DG213.	3																							
LTG-PC LTG-PF	D Retrofit Ltg Updated 22 Oct 08 RE Existing Ltg Updated 22 Oct 08	1 1	<mark>5. kW</mark> 12.3 kW	<mark>120</mark> 120	1 1	0 0	0 0	<mark>100%</mark> 100%	<mark>6 95%</mark> 6 95%	<mark>100%</mark> 100%	3 3	5.0 12.3	Constant Load Constant Load	FF FF	<mark>100%</mark> 100%	<mark>100%</mark> 100%	5.0 5.0 12.3	<mark>8,760</mark> 8,760	0% 82%	0 7,210	0 88,469	0 0	0.00 0.00	<mark>0%</mark> 0%	<mark>0%</mark> 0%	0.0 0.0
Systen	n Name: PLUG																									
PLUG	Plug loads	8	1. kW	115	1	0	0	100%	<mark>6 85%</mark>	100%	3	8.0	Constant Load	FF	100%	100%	8.0	8,760	17%	1,501	12,008	0	0.00	0%	0%	0.0
Systen	n Name: UAF																									
AUFG	Unaccouned for Gas	1	1000. MBH	I 0	1	0	0	100%	6 85%	60%	-	0.0	Constant Load	FF	100%	100%	0.0	6,715	0%	31	0	0	0.00	0%	0%	33.0
Buildi	ng Totals:											210.5					210.5				288,892					707.2

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client ID

Client	College of New C	Caledonia - (revi	ised 2	008)		Bu	ilding	g Nai	ne:	200 Food	Services										Client l	D		326	
				1	Motor	Data							E	xisting Ele	ectrical Co	ondition	5				Fans,Pi Compre	umps ssors	E:	cisting F Conditio	⁷ uel Ins
TAG	Part Description	Rating Qty	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	Name: AHU-2																								
AHU-2-S	CAFETERIA - MULTIZONE	1 20. hp	600	3	0	0	80%	85%	86%	4	13.9	Constant Load	FF	100%	100%	13.9	3,795	100%	3,795	52,673	17,600	12,000.00	100%	0%	0.0
System	Name: AHU-4	-								_											-				
AHU-4-S	COMPUTER LABS SUPPLY FAN	1 25. hp	600	3	0	24	80%	85%	88%	2	17.0	CNC AHU-4 P	VIV	100%	67%	11.3	3,900	100%	3,900	44,128	23,500	0.00	10%	0%	0.0
F-10(AH	SCIENCES RETURN FAN	1 10. hp	575	3	0	0	80%	85%	84%	4	7.1	CNC AHU-4 P	VIV	100%	67%	4.7	3,900	100%	3,900	18,486	18,000	0.00	0%	0%	0.0
System	Name: AHU-7																								
AHU-7-S	KITCHEN SUPPLY FAN	1 7.5 hp	600	3	0	0	80%	85%	83%	4	5.4	Constant Load	FF	100%	100%	5.4	4,055	100%	4,055	21,868	8,500	0.00	100%	0%	0.0
System	Name: AHU-8																								
AHU-8- S	SCIENCES SUPPLY FAN	1 25. hp	600	3	0	24	80%	85%	88%	2	17.0	CNC AHU-4 P	VIV	100%	67%	11.3	4,992	100%	4,992	56,484	20,000	0.00	10%	0%	0.0
F-12 (AH	SCIENCES RETURN FAN	1 10. hp	575	3	0	0	80%	85%	84%	4	7.1	CNC AHU-4 P	VIV	100%	67%	4.7	4,992	100%	4,992	23,662	17,000	0.00	0%	0%	0.0
System	Name: DHW																								
B-11	DOM HW BOILER (SUMMER)	1 3000. MBH	115	1	0	0	80%	85%	90%	-	0.0	Constant Load	FF	100%	100%	0.0	2,015	15%	302	0	0	0.00	0%	0%	955.8
System	Name: EFS																								
EF-6	KITCHEN HOOD EXH FAN	1 10. hp	480	3	0	0	80%	85%	80%	4	7.5	Constant Load	FF	100%	100%	7.5	4,055	100%	4,055	30,251	6,600	0.00	0%	0%	0.0
EF-7	CAFETERIA EXHAUST	1 10. hp	600	3	0	0	80%	85%	80%	4	7.5	Constant Load	FF	100%	100%	7.5	3,795	100%	3,795	28,312	8,200	0.00	0%	0%	0.0
EF-8	KITCHEN HOOD EXHAUST	1 5. hp	480	3	0	0	80%	85%	82%	4	3.6	Constant Load	FF	100%	100%	3.6	3,795	100%	3,795	13,811	0	8,600.62	0%	0%	0.0
System	Name: KITCHEN																								
Kit-Eq		1 600. MBH	115	1	0	0	80%	100%	82%	-	0.0	Constant Load	FF	100%	100%	0.0	2,000	100%	2,000	0	0	0.00	0%	0%	1,265.2
System	Name: LTG_PR2008265_BLI	DG2122																							
LTG-PO	Retrofit Ltg Updated 22 Oct 08	1 57. kW	120	1	0	0	100%	95%	100%	3	57.0	Constant Load	FF	100%	100%	57.0	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PRE	Existing Ltg Updated 22 Oct 08	1 118.1 kW	120	1	0	0	100%	95%	100%	3	118.1	Constant Load	FF	100%	100%	118.1	8,760	50%	4,378	516,891	0	0.00	0%	0%	0.0
System	Name: PLUG																								
PLUG	Plug loads	30 1. kW	115	1	0	0	100%	85%	100%	3	30.0	Constant Load	FF	100%	100%	30.0	8,760	31%	2,712	81,363	0	0.00	0%	0%	0.0
Buildin	g Totals:										291.1					275.0				887,928					2,221.1

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client: College of New Cl	aleaonia - (re	visea 2	.008)		Ви	ıldın	g Na	me:	500 Com															
			i	Motor	Data							E	xisting El	ectrical C	onditions	5				Fans,P Compre	umps essors	E	xisting 1 Conditic	Fuel ons
TAG Part Description	<i>Qty</i>	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System Name: ACU-1																								
CF_ACU- Condenser Fan for ACU-1 EF_ACU- Evaporator Fan for ACU-1	1 .8 hp 1 1. hp	208 208	3 3	0 0	3.5 0	809 809	% 85% <mark>% 85%</mark>	80% 80%	2	0.9 0.7	Constant Load	FF FF	100% 100%	100% 100%	0.9 0.7	5,460 5,460	25% 100%	1,365 5,460	1,170 4,073	0	0.00	0% 0%	0% 0%	0.0
System Name: AHU-3	1 1 6.7 KW	208	3	0	0	80%	% 85%	80%	3	6.7	Constant Load	FF	100%	100%	6.7	5,460	20%	1,092	7,349	0	0.00	0%	0%	0.0
AHU-3-S COMPUTER LABS - SUPPLY FAN F-1 (AHU AHU-3 Return Fan F-5(AHU- SCIENCES RETURN FAN	1 25. hp 1 7.5 hp 1 10. hp	600 600 575	3 3 3	0 0 0	24 0 0	80% 80% 80%	<mark>% 85%</mark> % 85% <mark>% 85%</mark>	88% 83% 84%	2 4 4	17.0 5.4 7.1	CNC AHU-3 P CNC AHU-3 P Constant Load	VIV VIV FF	100% 100% 100%	<mark>64%</mark> 64% 100%	10.8 3.4 7.1	<mark>4,368</mark> 4,368 <mark>4,368</mark>	100% 50% 100%	<mark>4,368</mark> 2,184 <mark>4,368</mark>	47,376 7,532 31,034	21,500 0 18,000	0.00 13,000.00 0.00	10% 0% 0%	0% 0% 0%	0.0 0.0 0.0
System Name: AHU-5																								
AHU-5-S COMPUTER LABS SUPPLY FAN F-11(AH SCIENCES RETURN FAN	1 25. hp 1 10. hp	600 575	3 3	0 0	24 0	80% 80%	% 85% <mark>% 85%</mark>	88% <mark>84%</mark>	2 4	17.0 7.1	CNC AHU-4 P CNC AHU-4 P	VIV VIV	100% 100%	67% <mark>67%</mark>	11.3 4.7	5,460 <u>5,460</u>	100% <mark>100%</mark>	5,460 <mark>5,460</mark>	61,779 25,880	23,500 18,000	0.00 0.00	10% 0%	0% 0%	0.0
System Name: AHU-6																								
AHU-6-S COMPUTER LABS SUPPLY FAN F-12(AH COMPUTER LABS RETURN FAN	1 25. hp 1 10. hp	600 575	3 3	19 0	24 0	809 809	% 85% <mark>% 85%</mark>	88% <mark>84%</mark>	1 4	16.8 7.1	CNC AHU-4 P CNC AHU-4 P	VIV VIV	100% <mark>100%</mark>	67% <mark>67%</mark>	11.2 4.7	5,200 <mark>5,200</mark>	100% <mark>100%</mark>	5,200 <mark>5,200</mark>	58,225 <mark>24,647</mark>	20,000 17,000	0.00 0.00	10% <mark>0%</mark>	0% <mark>0%</mark>	0.0 0.0
System Name: LTG_PR2008265_BLD	G2123																							
LTG-PO Retrofit Ltg Updated 22 Oct 08 LTG-PRE Existing Ltg Updated 22 Oct 08	1 47.5 kW 1 91. kW	120 120	1 1	0 0	0 0	1009 1009	% 95% <mark>% 95%</mark>	100% 100%	3 3	47.5 91.0	Constant Load Constant Load	FF FF	100% 100%	100% 100%	47.5 91.0	8,760 <mark>8,760</mark>	0% <mark>47%</mark>	0 <mark>4,112</mark>	0 <mark>374,066</mark>	0 0	0.00 0.00	0% <mark>0%</mark>	0% <mark>0%</mark>	0.0 0.0
System Name: PLUG																								
PLUG Plug loads	1 1. kW	115	1	0	0	1009	% 85%	100%	3	1.0	Constant Load	FF	100%	100%	1.0	8,760	100%	8,760	8,760	0	0.00	0%	0%	0.0
Building Totals:										225.3					201.2				651,891					0.0

Client: College of New Caledonia - (revised 2008) Building Name: 300 Computer & Classroom

Client ID

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client:	College of New Co	aledonia	ı - (revis	sed 20)08)		Bu	ilding	g Nai	ne: '	400 Denti	istry										Client I	D		326	
					Λ	Aotor 2	Data							Ex	cisting Ele	ectrical Co	ondition	8				Fans,Pi Compre	umps ssors	E	xisting . Conditie	Fuel ons
TAG Part L	Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System Name	: AHU-16																									
AHU-16- DENT	AL SUPPLY FAN	1 5.	hp	600	3	0	0	80%	85%	82%	4	3.6	Constant Load	FF	100%	100%	3.6	5,037	12%	604	2,199	6,000	0.00	10%	0%	0.0
System Name	: AHU-17																									
AHU-17- DENT	AL SUPPLY FAN	1 10). hp	600	3	0	0	80%	85%	84%	4	7.1	CNC - AH17 P	OD	100%	88%	6.3	2,860	100%	2,860	17,935	11,100	7,742.46	<mark>10%</mark>	0%	0.0
System Name	: DHW																									
DHWT-2 Domes	stic Hot Water (summer) stic Hot Water (Summer)	1 98 3 38	3. MBH 3. MBH	120 115	1 1	0 0	0 0	80% 80%	85% 100%	80% 75%	-	0.0 0.0	Constant Load	FF FF	100% 100%	100% 100%	0.0 0.0	8,760 8,760	20% 20%	1,752 1,752	0 0	0 0	0.00 0.00	0% <mark>0%</mark>	0% <mark>0%</mark>	181.0 210.6
System Name	: EFS																									
MISC Ex Miscel	laneous Exhaust (est) œom Exhaust (est)	5.1 2.3	hp hp	115 115	1 1	0	1 0	80% 80%	85% 85%	55% 55%	2 4	0.4 0.5	Constant Load	FF FF	100% 100%	100% 100%	0.4 0.5	8,760 2,860	4% 100%	307 2,860	120 1,552	0 0	0.00 0.00	0% <mark>0%</mark>	0% 0%	0.0 0.0
System Name	: LTG_PR2008265_BLD	G2124																								
LTG-PO Retrofi	it Ltg Updated 22 Oct 08 ng Ltg Updated 22 Oct 08	1 16 1 24	6.1 kW <mark>4.6 kW</mark>	120 120	1 1	0 0	0 0	100% 100%	95% 95%	100% 100%	3	16.1 24.6	Constant Load	FF FF	100% 100%	100% 100%	16.1 24.6	8,760 8,760	0% 52%	0 4,531	0 111,674	0 0	0.00 0.00	0% <mark>0%</mark>	0% 0%	0.0 0.0
System Name	: PLUG																									
PLUG Plug lo	bads	8 1.	kW	115	1	0	0	100%	85%	100%	3	8.0	Constant Load	FF	100%	100%	8.0	8,760	21%	1,821	14,569	0	0.00	0%	0%	0.0
Building Tota	ıls:											60.5					59.6				148,050					391.6

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client	t: College of New	Caledo	nia - (rev	vised 2	2008)	0.	Bu	ilding	g Nan	ne: '	450 Dayc	are										Client	D		326	
						Motor	Data							E	cisting Ele	ectrical C	Condition	\$				Fans,Pa Compre	umps essors	Ŀ	Existing Condition	Fuel ons
TAG	Part Description	<i>Qty</i>	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	Name: AHU-18																									
AHU-18-	DAY CARE SUPPLY FAN	1	7.5 hp	208	3	12	21.3	80%	85%	83%	1	3.6	Constant Load	I FF	100%	100%	3.6	3,640	100%	3,640	12,930	5,300	55,000.00	10%	0%	0.0
System	Name: EFS																									
EF-88/89	Exhaust fans	4	.1 hp	115	1	0	1.7	80%	85%	55%	2	0.5	Constant Load	I FF	100%	100%	0.5	6,715	40%	2,696	1,434	0	0.00	0%	0%	0.0
System	Name: LTG_PR2008265_BL	DG212	5																							
LTG-PO	Retrofit Ltg Updated 22 Oct 08	1	5. kW	120	1	0	0	100%	95%	100%	3	5.0	Constant Load	I FF	100%	100%	5.0	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PRE	E Existing Ltg Updated 22 Oct 08	1	9.2 kW	120	1	0	0	100%	95%	100%	3	9.2	Constant Load	I FF	100%	100%	9.2	8,760	31%	2,732	25,245	0	0.00	0%	0%	0.0
System	Name: PLUG																									
PLUG	Plug loads	8	1. kW	115	1	0	0	100%	85%	100%	3	8.0	Constant Load	l FF	100%	100%	. 8.0	8,760	16%	1,399	11,193	0	0.00	0%	0%	0.0
Buildin	g Totals:											26.4					26.4				50,802					0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Clien	t: College of New	, Caledo	onia - (rev	ised 2	008)	0.	Bu	uildin	g Na	me:	500 Gym											Client 1	! D		326	
					1	Motor	Data							Ex	cisting Ela	ectrical Co	ondition	S				Fans,Pı Compre	umps essors	E	xisting I Conditie	Fuel ons
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Y Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full 1 Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	n Name: AHU-10																									
AHU-10	- GYM SUPPLY FAN	1	5. hp	600	3	4	0	80%	6 85%	82%	1	3.6	Constant Load	FF	100%	100%	3.6	2,756	100%	2,756	10,054	5,000	0.00	10%	0%	0.0
System	n Name: AHU-9																									
AHU-9-	S GYM SUPPLY FAN	1	15. hp	600	3	10	0	80%	<mark>6 85%</mark>	86%	1	8.5	Constant Load	FF	100%	100%	8.5	3,822	100%	3,822	32,512	12,000	0.00	<mark>10%</mark>	0%	0.0
System	n Name: DHW																									
B-12	DOM HW BOILER (SUMMER)	1	125. MBH	115	1	0	0	80%	6 85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	2,015	15%	302	0	0	0.00	0%	0%	39.8
System	n Name: EFS																									
EF-1	GYM EXH FAN	1	.8 hp	575	3	1	1.25	80%	<mark>6 85%</mark>	75%	1	0.8	Constant Load	FF	100%	100%	0.8	3,822	100%	3,822	3,235	0	0.00	<mark>0%</mark>	0%	0.0
System	n Name: LTG_PR2008265_B	LDG212	6																							
LTG-PC	Retrofit Ltg Updated 22 Oct 08	1	29.7 kW	120	1	0	0	100%	6 95%	100%	3	29.7	Constant Load	FF	100%	100%	29.7	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PR	RE Existing Ltg Updated 22 Oct 08	1	<mark>41.8 kW</mark>	120	1	0	0	100%	<mark>6 95%</mark>	100%	3	41.8	Constant Load	FF	100%	100%	41.8	8,760	63%	5,490	229,499	0	0.00	0%	0%	0.0
System	n Name: PLUG																									
PLUG	Plug loads	3	1. kW	115	1	0	0	100%	6 85%	100%	3	3.0	Constant Load	FF	100%	100%	3.0	8,760	60%	5,288	15,865	0	0.00	0%	0%	0.0
Buildi	ng Totals:											87.5					87.5				291,166					39.8

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Clien	t: College of New (Caledon	ia - (revise	d 20	008)		Bu	ildin	g Na	me:	700 Libra	ury										Client	ID		326	
					M	<i>lotor</i>	Data							Ex	xisting El	ectrical C	ondition	\$				Fans,Pa Compre	umps essors	Ŀ	xisting 1 Conditie	Fuel ons
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
Systen	n Name: ACU																									
AC	COMPUTER RM AC UNIT	1	10. hp 2	08	3	0	31	80	% 85%	5 80%	2	7.6	Constant Load	FF	100%	100%	7.6	5,460	25%	1,365	10,366	0	0.00	0%	0%	0.0
Systen	n Name: AHU-719																									
AHU-71	9 STUDENT SERVICES RETURN F	FAN 1	20. hp 6	00	3	0	0	80	<mark>% 85%</mark>	<mark>. 86%</mark>	4	13.9	CNC - AH17 P	VFD	100%	37%	5.1	3,900	100%	3,900	19,955	32,000	0.00	0%	0%	0.0
AHU-71	9 STUDENT SERVICES SUPPLY F.	AN 1	50. hp 1	15	1	0	0	80	% 85%	89%	4	33.5	CNC - AH17 P	VIV	100%	65%	21.7	3,900	100%	3,900	84,819	34,000	0.00	15%	0%	0.0
Systen	n Name: AHU-720																									
AHU-72	20 LIBRARY RETURN FAN	1	20. hp 6	00	3	0	0	80	<mark>% 85%</mark>	<mark>. 86%</mark>	4	13.9	CNC - AH17 P	VIV	100%	65%	9.0	5,460	100%	5,460	49,156	29,000	0.00	0%	<mark>5%</mark>	0.0
AHU-72	20 LIBRARY SUPPLY FAN	1	40. hp 6	00	3	0	40	80	% 85%	s 89%	2	28.3	CNC - AH17 P	VIV	100%	65%	18.3	5,460	100%	5,460	100,114	29,000	0.00	20%	0%	0.0
Systen	n Name: EFS																									
EF 4/5	ELEC ROOM MAIN/SECOND	2.	.1 hp 1	15	1	2	2.6	80	<mark>% 85%</mark>	65%	1	0.3	Constant Load	FF	100%	100%	0.3	8,760	20%	1,752	548	0	0.00	0%	0%	0.0
EF-1	Elevator	1.	.1 hp 1	15	1	2	2	80	% 85%	5500%	1	0.2	Constant Load	FF	100%	100%	0.2	8,760	20%	1,752	325	0	0.00	0%	0%	0.0
EF-11	Fume hood	1	1. hp 5	75	3	0	1.1	80	<mark>% 85%</mark>	5 <mark>77%</mark>	2	0.7	Constant Load	FF	100%	100%	0.7	8,760	10%	876	653	1	0.00	0%	0%	0.0
EF-12	Anatomy	1.	.3 hp 1	15	1	0	4.2	80	% 85%	65%	2	0.3	Constant Load	FF	100%	100%	0.3	8,760	10%	876	288	4	0.00	0%	0%	0.0
EF-2/3	W/R MAIN/SECOND	2.	.3 hp 1	15	1	0	5.9	80	<mark>% 85%</mark>	65% 65%	2	0.9	Constant Load	FF	100%	100%	0.9	5,460	100%	5,460	5,038	6	0.00	0%	0%	0.0
EF-6	JANITOR	1	. hp 1	15	1	1	1.1	80	% 85%	50%	1	0.1	Constant Load	FF	100%	100%	0.1	8,760	100%	8,760	942	0	0.00	0%	0%	0.0
	W/R East	1	.3 hp 1	20 75	1	0	4.8	80	<mark>% 85%</mark>	55%	2	0.4	Constant Load		100%	100%	0.4	5,460	100%	5,460	2,139	4	0.00	0%	0%	0.0
EF-709/		2 DC2127	2. np 5	/5	3	2	2	80	% 85%	o 80%	1	3.5	Constant Load	FF	100%	100%	3.5	8,760	10%	876	3,040	0	3,000.00	0%	0%	0.0
System	<i>i Nume:</i> LIG_I K2008205_BL	D02127																								
LTG-PC	D Retrofit Ltg Updated 22 Oct 08	1 (61.8 kW 1	20	1	0	0	100	<mark>% 95%</mark>	5 100%	3	61.8	Constant Load	FF	100%	100%	61.8	8,760	0%	0	0	0	0.00	0%	0%	0.0
LIG-PF	KE Existing Ltg Updated 22 Oct 08	1	97.9 kW 1	20	1	0	0	100	% 95%	b 100%	3	97.9	Constant Load	FF	100%	100%	97.9	8,760	59%	5,207	509,878	0	0.00	0%	0%	0.0
Systen	n Name: PLUG																									
PLUG	Plug loads	38	1. k <mark>W 1</mark>	15	1	0	0	100	<mark>% 85%</mark>	<mark>5 100%</mark>	3	38.0	Constant Load	FF	100%	100%	38.0	8,760	28%	2,423	92,065	0	0.00	0%	0%	0.0
Buildi	ng Totals:											301.4					266.0				879,326					0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client	D																											
---------------	---																											
Client	College of New Cale	edon	ia - (revi	sed 2	2008)			Buil	lding	n Nan	ne:	800 Indus	strial Ed	ucation										Client 1	Ď		326	
---------	--------------------------------	-----------------	--------------------	-------	----------	--------	---	----------	-------	------------	-------------	---------------------------	------------------------	---------------	----------------	--------------------	-----------	--------------------	----------------------	------------------------------	----------	------------------------------	-------------------------------	---------------------	-------------------	------------	-----------------------	------------------------
						Moto	r Da	ıta								Existing	Eleo	ctrical Con	nditions	5				Fans,Pi Compre	umps ssors	E	xisting 1 Conditic	Fuel ons
TAG	Part Description Q	Qty	Rating	Volts	Phases	MA	F	LA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flo Cont	w Mean rol Flov	e % w	% Full Do Power	Avg emand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	Name: AHU-11																											
AHU-11-	SUPPLY FAN	1	1. hp	208	1	()	5	80%	85%	77%	2	0.7	Constant Lo	ad FF	10	00%	100%	0.7	2,990	30%	897	634	4,000	0.00	0%	0%	0.0
System	Name: AHU-12																											
SF AHU		1	2. hp	208	3	()	0	80%	85%	80%	4	1.5	Constant Lo	ad FF	10	0%	100%	1.5	3.770	100%	3,770	5.625	8.000	2.000.00	0%	0%	0.0
System	Nama: AHI/-14				Ŭ				0070					0011010111120						0,110		0,110	0,020	0,000	_,			0.0
		4	7.5 hp	200	2		<u> </u>	1.0	0.00/	050/	0.00/	2	5.2	Constant La		10	2007	100%	5.2	2.240	1000/	2.240	11 604	6 800	10.000.00	100/		0.0
AHU-14-		1	7.5 np	208	3	() 2	21.6	80%	85%	80%	2	5.3	Constant Lo		10	JU%	100%	5.3	2,210	100%	2,210	11,694	6,800	10,000.00	10%	0%	0.0
System	Name: AHU-15																											
AHU-15-	SUPPLY FAN	1	1.5 hp	208	3	()	1.9	80%	85%	80%	2	0.5	Constant Lo	ad FF	10	00%	100%	0.5	3,640	100%	3,640	1,694	3,000	2,200.00	10%	0%	0.0
System	Name: DHW																											
B-10	DOMESTIC HOT WATER BOILER (S	1	125. MBH	115	1	()	0	80%	85%	80%	-	0.0	Constant Lo	ad FF	10	00%	100%	0.0	2,015	15%	302	0	0	0.00	0%	0%	39.8
System	Name: EXHAUST																											
EF1A	WELDING EXHAUST FAN	1	10. hp	208	3	()	0	80%	85%	84%	4	7.1	Constant Lo	ad FF	10	0%	100%	7.1	1,717	100%	1,717	12,199	14,000	0.00	0%	0%	0.0
EF1B	WELDING EXHAUST FAN	1	7.5 hp	208	1	()	0	80%	85%	83%	4	5.4	Constant Lo	ad FF	10	00%	100%	5.4	1,717	100%	1,717	9,259	8,000	0.00	0%	0%	0.0
EXH FAN	I GRINDING EXHAUST FAN	1	10. hp	208	3	()	0	80%	85%	84%	4	7.1	Constant Lo	ad FF	10	00%	100%	7.1	6,715	40%	2,693	19,132	17,000	0.00	0%	0%	0.0
		12	2. hp	208	3	()	0	80%	85%	80%	4	1.5	Constant Lo	ad FF	10)0%	100%	1.5	6,715	40%	2,693	4,018	2,000	0.00	0%	0%	0.0
		1	3. np 3. hn	208	3	()	0	80%	85%	80%	4	2.2	Constant Lo	ad FF	10	0% 00%	100%	2.2	3,770	100%	3,770	8,437 8,437	3,000	0.00	0%	0%	0.0
F-24	GRINDING EXHAUST FAN	1 4	40 hp	208	3	(,)	0	80%	85%	89%	4	2.2	Constant Lo	ad FF	10	00%	100%	2.2	6715	40%	2 693	72 229	10,000	0.00	0%	0%	0.0
FILTER	WELDING RECIRC FAN	1	100. hp	600	3	70)	0	80%	85%	91%	1	61.8	Constant Lo	ad FF	10	00%	100%	61.8	2,700	100%	2,700	166,952	38,000	0.00	0%	0%	0.0
System	Name: HVAC																											
AHU-13-		1	2. hp	208	3	()	0	80%	85%	80%	4	1.5	Constant Lo	ad FF	10	0%	100%	1.5	1,717	0%	0	0	8.000	2.000.00	10%	0%	0.0
System	Name: ITG PR2008265 BIDG	2128							0070					0011010111120						.,	0,0	<u> </u>	Ŭ	0,000	_,			0.0
J TO DO		2120		400	4		、 、	0	4000/	050/	4000/	2	54.0	Constant La	- d 55	40	2007	4000/	54.0	0.700	00/	0	0	0	0.00	00/		0.0
LTG-PO	Existing Ltg Updated 22 Oct 08	1 :	54.9 KW 79.4 kW	120	1	(())	0	100%	95% 95%	100%	3	54.9 79.4	Constant Lo	ad FF ad FF	10	0% 0%	100%	54.9 79.4	8,760 8,760	43%	0 3,793	0 301,123	0	0.00	0%	0%	0.0
System	Name: MAU-1							<u> </u>		0070										0,100		0,100	001,120		0.00	0,0		
		4 (115	4		<u>, </u>	0	0.00/	050/	1000/		0.0	Constant La		10	2007	100%	0.0	2 770	200/	754	0	16.000	0.00	00/		1 6 4 4 0
MUA-GB	WELDING MAKE UP AIR UNIT BUR	14	2068. MBH	600	1	(())	0	80%	85%	100% 86%	-	0.0 10.4	Constant Lo	ad FF ad FF	10	0% 0%	100%	0.0 10.4	3,770	20%	754 3770	39 243	16,000	0.00	0% 100%	0%	1,644.0
System	Name: MAU-1 Gring Room		· • · · · P						0070					0011010111120						0,0		0,0	00,2.0		0.00			0.0
				100	4		、 、	0	0.00/	050/	0.00/		0.0	Constant La	- d 55	40	2007	4000/	0.0	0.700	40/	250	0	0	0.00	00/		400.7
SF MAU	- Supplu fan for MAU-1	14	297. MBH 1.5 hp	575	1 3	(())	0 4.1	80%	85%	80%	- 2	0.0 2.8	Constant Lo	ad FF ad FF	10	0% 0%	100%	2.8	8,760 6,715	4% 5%	350 336	932	0	2,700.00	0% 100%	0%	109.7
Sustam	Name: MU-1			010	<u> </u>		,		0070	0070	0070	_	2.0	Constant Lo				10070	2.0	0,110	0,0		002	Ŭ	2,700.00	10070	0/0	0.0
System		4	10 h-	000			<u>, </u>		0.001	050/	0.407	4	- 4	Constant		4.0	2007	4000/	- 4	0745	4001	0.000	40.450	40.000	7 740 40	00/		0.0
	MAKE OF AIR ONIT, GRINDING RM	1	IU. np	600	3)	0	80%	85%	84%	4	7.1	Constant Lo	ad FF	10	JU%	100%	7.1	6,715	40%	2,696	19,156	19,000	7,742.46	0%	0%	0.0
System	Name: MU-2																											
MU-2	MAKE UP AIR UNIT, WELDING SHO	1 :	5. hp	600	3	()	0	80%	85%	82%	4	3.6	Constant Lo	ad FF	10	00%	100%	3.6	6,715	40%	2,696	9,812	6,000	0.00	0%	0%	0.0
System	Name: PLUG																											
PLUG	Plug loads	25 ⁻	1. kW	115	1	()	0	100%	85%	100%	3	25.0	Constant Lo	ad FF	10	00%	100%	25.0	8,760	23%	2,018	50,448	0	0.00	0%	0%	0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Prism Engineering Ltd.

Clier	nt: College of New	Caledor	nia - (rev	vised 2	2008)		Bu	ilding	Nar	me: 8	800 Indu	strial Edu	cation									Client	D		326	
						Motor	Data							Ex	cisting Ele	ectrical	Condition	25				Fans,Pa Compre	umps essors	E	Existing I Conditio	Fuel
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	⁷ Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	n Name: SHOPT																									
MISC	Miscellaneous shop equipment	80	1. kW	115	1	0	0	80%	85%	100%	3	64.0	Constant Load	FF	100%	1009	% 64.0	2,700	20%	540	34,560	0	0.00	0%	0%	0.0
M-T	Machine Tools	40	1. hp	115	1	0	0	80%	85%	100%	4	23.9	Constant Load	FF	100%	1009	% 23.9	2,700	20%	540	12,891	0	0.00	0%	0%	0.0
WELD	Welding Equipment	32	13. kW	115	1	0	0	100%	100%	100%	3	416.0	Constant Load	FF	100%	1009	% 416.0	2,700	10%	270	112,320	0	0.00	0%	0%	0.0
System	n Name: UH																									
UH-	Unit heaters	9	80. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	1009	<mark>% 0.0</mark>) 8,760	15%	1,314	0	0	0.00	0%	0%	997.5
Build	ing Totals:											810.8					810.8				900,797					2,791.1

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client: College of New	Caledoni	a - (revis	ed 20	008)		Bu	ildin _a	g Na	me:	940 Main	itenance	Workshop									Client I	D		326	
				Ì	Motor	Data							E:	xisting Ele	ectrical (Conditio	ns				Fans,Pu Compre	umps ssors	E	xisting Conditio	Fuel ons
TAG Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	' Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demana (kW)	Annua I Hour Schedul	l s ed %SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System Name: LTG_PR2008265_BL	LDG2129																								
LTG-PO Retrofit Ltg Updated 22 Oct 08	1.	4 kW	120	1	0	0	100%	95%	100%	3	0.4	Constant Load	FF	100%	100%	6 0	.4 8,76	0 0%	0	0	0	0.00	0%	0%	0.0
LTG-PRE Existing Ltg Updated 22 Oct 08	1	7 kW	120	1	0	0	100%	95%	100%	3	0.7	Constant Load	FF	100%	100%	<mark>6 0</mark>	.7 8,76	0 38%	3,301	2,346	0	0.00	0%	0%	0.0
System Name: PLUG																									
PLUG Plug loads	1 1	. kW	115	1	0	0	100%	85%	100%	3	1.0	Constant Load	FF	100%	100%	61	.0 8,76	0 29%	2,562	2,562	0	0.00	0%	0%	0.0
Building Totals:											2.1					2.	1			4,908					0.0

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client	College of New C	Caledon	ia - (revis	sed 20	008)		Bu	ildin	g Nai	ne:	960 Powe	r Plant										Cuem I	D		20	
					N	<i>lotor</i> .	Data							E	xisting El	ectrical C	Conditions	1				Fans,Pu Compres	mps ssors	Ex C	isting F Conditio	'uel ns
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW) S	Annual Hours Schedulea	l %SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	Name: BOILER PLANT		-								1															
B-3	HOT WATER BOILER	1	4200. MBH	0	1	0	0	80%	100%	82%	<u> </u>	0.0	Constant Load	FF	100%	100%	0.0	8,760	12%	1.092	0	0	0.00	0%	0%	4,837,3
B-4	HOT WATER BOILER	1	2090. MBH	115	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	21%	1,820	0	0	0.00	0%	0%	4,011.3
B-5	HOT WATER BOILER	1	14650. MB	115	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	5%	415	0	0	0.00	0%	0%	6,417.7
B-6	HOT WATER BOILER	1	14650. MB	115	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	0%	5	0	0	0.00	0%	0%	75.8
MUA-2	MAKE UP AIR UNIT FAN	1	5. hp	600	3	0	0	80%	85%	82%	4	3.6	Constant Load	FF	100%	100%	3.6	1,717	100%	1,717	6,248	5,000	0.00	100%	0%	0.0
MUA-2G	MAKE UP AIR UNIT BURNER	1	800. MBH	230	1	0	0	80%	100%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	1,717	20%	343	0	5,000	0.00	100%	0%	289.7
P-1	CAMPUS HEATING PUMP #1	1	20. hp	575	3	0	19.3	80%	85%	91%	2	13.1	Constant Load	FF	100%	100%	13.1	8,760	67%	5,843	76,370	0	0.00	0%	0%	0.0
P-11	CAMPUS HEATING PUMP	1	20. hp	575	3	0	19.3	80%	85%	91%	2	13.1	Constant Load	FF	100%	100%	13.1	8,760	0%	0	0	0	0.00	0%	0%	0.0
P-16 & 1	Perimeter Rad Block 100 (est)	2	.3 hp	115	1	0	5.8	80%	85%	55%	2	0.9	Constant Load	FF	100%	100%	0.9	8,760	50%	4,380	3,973	0	0.00	0%	0%	0.0
<mark>P-18</mark>	AHU-1 Preheat coil (est)	1	.3 hp	115	1	0	5.8	80%	85%	55%	2	0.5	Constant Load	FF	100%	100%	0.5	8,760	50%	4,380	1,987	0	0.00	0%	0%	0.0
P-19	AHU-1 Re-heat coil	1	.5 hp	600	3	0	0	80%	85%	70%	4	0.4	Constant Load	FF	100%	100%	0.4	8,760	50%	4,380	1,867	0	0.00	0%	0%	0.0
P-2	CAMPUS HEATING PUMP #2	1	20. hp	575	3	0	19.3	80%	85%	91%	2	13.1	Constant Load	FF	100%	100%	13.1	8,760	67%	5,843	76,370	0	0.00	0%	0%	0.0
P-21	Pre-heat coil AHU-2	1	.8 hp	575	3	0	1.1	80%	85%	75%	2	0.7	Constant Load	FF	100%	100%	0.7	8,760	50%	4,380	3,263	0	0.00	0%	0%	0.0
<mark>P-23</mark>	AHU-2 Heating Coil	1	.8 hp	575	3	0	1.1	80%	85%	75%	2	0.7	Constant Load	FF	100%	100%	0.7	8,760	50%	4,380	3,263	0	0.00	0%	0%	0.0
P-25	Const. temp circuit 200/300 circuit	1	1.5 MBH	575	3	0	0	80%	85%	77%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	50%	4,380	0	0	0.00	0%	0%	6.9
<mark>P-30</mark>	AHU-5 Heating Coil	1	3. hp	575	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	50%	4,380	9,802	0	0.00	0%	0%	0.0
P-31 & 3	Perimeter rad 200/300 block	2	1.5 hp	575	3	0	0	80%	85%	77%	4	2.3	Constant Load	FF	100%	100%	2.3	8,760	50%	4,380	10,184	0	0.00	0%	0%	0.0
<mark>P-38</mark>	Gym Preheat & Multizone (est)	1	.3 hp	115	1	0	0	80%	85%	75%	4	0.2	Constant Load	FF	100%	100%	0.2	8,760	50%	4,380	871	0	25.00	0%	0%	0.0
P-39	Gym re-heat & multizone	1	.8 hp	575	3	0	0	80%	85%	77%	4	0.6	Constant Load	FF	100%	100%	0.6	8,760	50%	4,380	2,546	0	856.00	0%	0%	0.0
<mark>P-40</mark>	Gym ancillary heating	1	.2 hp	115	1	0	0	80%	85%	55%	4	0.2	Constant Load	FF	100%	100%	0.2	8,760	50%	4,380	794	0	0.00	0%	0%	0.0
P-61	Shop 2 Radiation 800 block	1	.5 hp	208	3	6	2.2	80%	85%	70%	1	1.8	Constant Load	FF	100%	100%	1.8	1,400	100%	1,400	2,487	0	0.00	0%	0%	0.0
<mark>P-62</mark>	Unit Heaters 800 block (est)	1	.3 hp	208	3	2	2.2	80%	85%	80%	1	0.5	Constant Load	FF	100%	100%	0.5	1,400	100%	1,400	729	0	0.00	0%	0%	0.0
P-63	HD Mechanics	1	1.5 hp	208	3	0	0	80%	85%	80%	4	1.1	Constant Load	FF	100%	100%	1.1	8,760	50%	4,380	4,901	0	0.00	0%	0%	0.0
<mark>P-64</mark>	Millwright - 800 Block	1	.8 hp	208	1	2	2.9	80%	85%	75%	1	0.4	Constant Load	FF	100%	100%	0.4	8,760	50%	4,380	1,859	0	0.00	0%	0%	0.0
P-65	Welding - 800 Block	1	.8 hp	208	1	2	2.9	80%	85%	75%	1	0.4	Constant Load	FF	100%	100%	0.4	8,760	50%	4,380	1,704	0	0.00	0%	0%	0.0
P-7	CIRC PUMP (B-3)	1	5. hp	208	3	0	0	80%	85%	80%	4	3.7	Constant Load	FF	100%	100%	3.7	8,760	49%	4,266	15,913	0	0.00	0%	0%	0.0
P-70	AHU-3 Heating Coil (est)	1	.5 hp	115	1	0	0	80%	85%	70%	4	0.4	Constant Load	FF	100%	100%	0.4	8,760	50%	4,380	1,867	0	0.00	0%	0%	0.0
<mark>P-701 &</mark>	AHU-719 Heating coil	2	520. Watt	115	1	5	4.9	80%	85%	70%	1	0.9	Constant Load	FF	100%	100%	0.9	8,760	25%	2,190	1,927	0	0.00	0%	0%	0.0
P-703/70	AHU-720 Heating coil	2	340. Watt	115	1	0	3.55	80%	85%	70%	2	0.6	Constant Load	FF	100%	100%	0.6	8,760	25%	2,190	1,216	3	0.00	0%	0%	0.0
<mark>P-705</mark>	HEATING PUMP	1	3. hp	208	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	67%	5,869	13,135	0	0.00	0%	0%	0.0
P-706	HEATING PUMP	1	3. hp	208	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	67%	5,869	13,135	0	0.00	0%	0%	0.0
<mark>P-71</mark>	AHU-4 Heating coil (est)	1	.5 hp	115	1	0	0	80%	85%	70%	4	0.4	Constant Load	FF	100%	100%	0.4	8,760	50%	4,380	1,867	0	0.00	0%	0%	0.0
P-8	CIRC PUMP (B-4)	1	5. hp	208	3	0	0	80%	85%	80%	4	3.7	Constant Load	FF	100%	100%	3.7	8,760	49%	4,266	15,913	0	0.00	0%	0%	0.0
P-81	Block 400 radiation	1	.8 hp	115	1	0	10.6	80%	85%	55%	2	0.8	Constant Load	FF	100%	100%	0.8	8,760	50%	4,380	3,631	0	76.00	0%	0%	0.0
P-82	AHU-16 Heating coil	1	.3 hp	115	1	0	0	80%	85%	65%	4	0.3	Constant Load	FF	100%	100%	0.3	8,760	50%	4,380	1,327	0	0.00	0%	0%	0.0
P-84	AHU-17 Heating coil	1	.3 hp	115	1	0	0	80%	85%	65%	4	0.3	Constant Load	FF	100%	100%	0.3	8,760	50%	4,380	1,327	0	0.00	0%	0%	0.0
P-87	AHU-1 450 Daycare heating coil	1	.5 hp	575	3	0	0.9	80%	85%	80%	2	0.6	Constant Load	FF	100%	100%	0.6	8,760	50%	4,380	2,670	0	0.00	0%	0%	0.0
P-AHU-6	AHU-6 Heating Pump	1	1.5 hp	575	3	0	0	80%	85%	77%	4	1.2	Constant Load	FF	100%	100%	1.2	8,760	50%	4,380	5,092	0	0.00	0%	0%	0.0
P-AHU-8	AHU-8 Heating Coil	1	1.5 hp	575	3	0	0	80%	85%	77%	4	1.2	Constant Load	FF	100%	100%	1.2	8,760	50%	4,380	5,092	0	0.00	0%	0%	0.0
PG-1	Glycol Pumps-1	3	3. hp	208	3	0	0	80%	85%	80%	4	6.7	Constant Load	FF	100%	100%	6.7	8,760	50%	4,380	29,407	0	0.00	0%	0%	0.0
PG-2	Glycol Pumps-2	4	2. hp	575	3	0	0	80%	85%	78%	4	6.1	Constant Load	FF	100%	100%	6.1	8,760	50%	4,380	26,810	0	192.00	0%	0%	0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client ID

326

Clien	t: College of New C	Caledo	nia - (rev	vised 2	008)		Bu	ilding	g Na	me:	960 Powe	er Plant										Cuent I	D)20	
					1	Motor	Data							E	xisting Eld	e <mark>ctrical</mark> Co	ondition	s				Fans,Pı Compre	umps ssors	E:	xisting F Conditio	ruel ns
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full 1 Power	Avg Demand (kW)	Annual Hours Scheduled	! %SOF	Annual Operating hours	Electrical g Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
System	Name: CHILLER PLANT																									
CH-1	CHILLER #1	1	300. kW	600	3	0	0	80%	85%	80%	3	300.0	Constant Load	FF	100%	100%	300.0	8,760	0%	0	0	0	0.00	0%	0%	0.0
CH-2	CHILLER #2	1	188. kW	600	3	0	0	80%	85%	80%	3	188.0	Constant Load	FF	100%	100%	188.0	2,686	25%	672	126,248	0	0.00	0%	0%	0.0
CT-1	COOLING TOWER #1	2	10. hp	600	3	0	0	70%	85%	84%	4	12.4	Constant Load	FF	100%	100%	12.4	8,760	14%	1,218	15,139	0	0.00	0%	0%	0.0
CT-2	COOLING TOWER #2	1	25. Hp	600	3	0	0	70%	85%	88%	4	14.8	Constant Load	FF	100%	100%	14.8	8,760	0%	0	0	0	0.00	0%	0%	0.0
P-22	AHU-2 Cooling coll	1	.8 np	5/5	3	1	1.1	80%	85%	75%	1	0.8	Constant Load		100%	100%	0.8	8,760	14%	1,218	1,031	0	0.00	300%	0%	0.0
P-24		1	3. np 2. hp	575	3	0	0	80%	050/	80%	4	2.2	Constant Load		100%	100%	2.2	8,760	14%	1,218	2,725	0	0.00	0%	0%	0.0
P-20		1	3. hp	575	с 2	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8 760	14 /0	1,210	2,725	0	0.00	0%	0%	0.0
P-3	CHILLED WATER PUMP #1	1	25. hp	575	3	0	0	80%	85%	85%	4	17.6	Constant Load	FF	100%	100%	17.6	8,760	14%	1,218	21.373	0	0.00	0%	0%	0.0
P-33	AHU-6 Cooling Coil	1	3. hp	575	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	14%	1,218	2.725	0	0.00	0%	0%	0.0
P-36	AHU-8 Cooling Coil	1	3. hp	575	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	14%	1,218	2,725	0	0.00	0%	0%	0.0
P-4	CHILLED WATER PUMP #2	1	10. hp	600	3	0	0	80%	85%	90%	4	6.6	Constant Load	FF	100%	100%	6.6	8,760	14%	1,218	8,074	0	0.00	0%	0%	0.0
P-5	CONDENSOR WATER PUMP #1	1	25. hp	575	3	0	0	80%	85%	85%	4	17.6	Constant Load	FF	100%	100%	17.6	8,760	0%	0	0	0	0.00	0%	0%	0.0
P-6	CONDENSER WATER PUMP #2	1	20. hp	575	3	0	19.3	80%	85%	91%	2	13.1	Constant Load	FF	100%	100%	13.1	8,760	14%	1,218	15,915	0	0.00	0%	0%	0.0
P-707	CHILLED WATER PUMP	1	2. hp	115	1	0	0	100%	85%	77%	4	1.9	Constant Load	FF	100%	100%	1.9	8,760	14%	1,218	2,359	0	0.00	0%	0%	0.0
<mark>P-83</mark>	AHU-16 Cooling Coil	1	.3 hp	115	1	0	0	80%	85%	65%	4	0.3	Constant Load	FF	100%	100%	0.3	8,760	14%	1,218	369	0	0.00	0%	0%	0.0
P-85	AHU-17 Cooling Coil	1	.3 hp	115	1	0	0	80%	85%	65%	4	0.3	Constant Load	FF	100%	100%	0.3	8,760	14%	1,218	369	0	0.00	0%	0%	0.0
P-88	AHU-1 for block 450 daycare coolin	<mark>g 1</mark>	.5 hp	575	3	0	0.9	80%	85%	80%	2	0.6	Constant Load	FF	100%	100%	0.6	8,760	14%	1,218	742	0	0.00	0%	0%	0.0
System	Name: COMPRESSED AIR																									
AC-1	AIR COMPRESSOR #1	1	25. hp	600	3	0	0	70%	85%	80%	4	16.3	Constant Load	FF	100%	100%	16.3	8,760	10%	876	14,295	0	0.00	0%	0%	0.0
AC-2	AIR COMPRESSOR #2	1	25. hp	600	3	0	0	70%	85%	80%	4	16.3	Constant Load	FF	100%	100%	16.3	8,760	10%	876	14,295	0	0.00	0%	0%	0.0
AC-3	New Recip Compressor	1	15. hp	575	3	0	0	80%	85%	90%	4	9.9	Constant Load	FF	100%	100%	9.9	8,760	0%	0	0	0	0.00	0%	0%	0.0
System	Name: DWH		-																			-				
P-20	DHW pump for block 100	1	.1 hp	120	1	0	0	80%	85%	80%	4	0.1	Constant Load	FF	100%	100%	0.1	8,760	20%	1,752	163	0	40.00	0%	0%	0.0
P-24	DWH Pump for block 200	1	3. hp	575	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	20%	1,752	3,921	0	0.00	0%	0%	0.0
P-27	DHW for block 300	1	3. hp	575	3	0	0	80%	85%	80%	4	2.2	Constant Load	FF	100%	100%	2.2	8,760	20%	1,752	3,921	0	0.00	0%	0%	0.0
P-41	DHW main pump for Gym (est)	1	1. hp	575	3	0	1.5	80%	85%	80%	2	1.0	Constant Load	FF	100%	100%	1.0	8,760	20%	1,752	1,780	0	0.00	0%	0%	0.0
<mark>P-43</mark>	DHW Aux. pump for 500 Gym (est)	1	.2 hp	115	1	0	3.6	80%	85%	55%	2	0.3	Constant Load	FF	100%	100%	0.3	8,760	20%	1,752	493	0	0.00	0%	0%	0.0
System	Name: LTG_PR2008265_BLL	DG213	0																							
LTG-PO	Retrofit Ltg Updated 22 Oct 08	1	1.6 kW	120	1	0	0	100%	95%	100%	3	1.6	Constant Load	FF	100%	100%	1.6	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PO	Retrofit Ltg Updated 22 Oct 08	1	1.6 kW	120	1	0	0	100%	95%	100%	3	1.6	Constant Load	FF	100%	100%	1.6	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PR	E Existing Ltg Updated 22 Oct 08	1	2.7 kW	120	1	0	0	100%	95%	100%	3	2.7	Constant Load	FF	100%	100%	2.7	8,760	39%	3,395	9,072	0	0.00	0%	0%	0.0
LTG-PRI	E Existing Ltg Updated 22 Oct 08	1	2.7 kW	120	1	0	0	100%	95%	100%	3	2.7	Constant Load	FF	100%	100%	2.7	8,760	39%	3,395	9,072	0	0.00	0%	0%	0.0
System	Name: PLUG																									
PLUG	Plug loads	1	1. kW	115	1	0	0	100%	85%	100%	3	1.0	Constant Load	FF	100%	100%	1.0	8,760	20%	1,770	1,770	0	0.00	0%	0%	0.0
System	Name: UAF																									
UAFE	Unaccounted Electrical equipment	60	1. kW	115	1	0	0	100%	100%	100%	3	60.0	Constant Load	FF	100%	100%	60.0	8,760	99%	<u>8,630</u>	<u>517,82</u> 1	0	0.00	0%	0%	0.0
UAFG	Unaccounted for Gas	1	1000. MBH	H 0	1	0	0	100%	85%	60%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	6%	547	0	0	0.00	0%	0%	576.9
Buildin	ng Totals:											790.5					790.5				1,131,396					16,215.5
	с -																									

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client ID

326

Prism Engineering Ltd.

Client: College of New	Caledonia -	(revised	2008	8)		Bui	lding	Nar	ne:	960A Tui	ınel										Client I	D		326	
				Mot	tor Da	ata							E :	xisting Ele	ectrical (Condition	15				Fans,Pu Compre	umps ssors	ŀ	Existing Condition	Fuel
TAG Part Description	<i>Qty</i>	1 Ous	Phases Volte	e M	IA F	LA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	l %SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% O A	% HR	Fuel Energy (GJ)
System Name: LTG_PR2008265_BL	LDG2131																								
LTG-PO Retrofit Ltg Updated 22 Oct 08	1 1.9 k	N 12	0	1	0	0	100%	95%	100%	3	1.9	Constant Load	FF	100%	100%	61.	9 8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PRE Existing Ltg Updated 22 Oct 08	1 4.1 k\	N 12	0	1	0	0	100%	95%	100%	3	4.1	Constant Load	FF	100%	100%	<mark>6 4.</mark>	1 8,760	110%	9,638	39,682	0	0.00	<mark>0%</mark>	0%	0.0
System Name: PLUG																									
PLUG Plug loads	1 1. kW	' 11	5	1	0	0	100%	85%	100%	3	1.0	Constant Load	FF	100%	100%	61.	0 8,760	41%	3,548	3,548	0	0.00	0%	0%	0.0
Building Totals:											7.1					7.1	1			43,230					0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Clien	t: College of New (Caledor	nia - (rev	vised 2	008)		Bu	ilding	g Nar	ne:	980 Powe	r Engine	eering									Client	D		326	
					Ì	Motor 1	Data							Ex	cisting Ele	ectrical C	ondition	5				Fans,Pa Compre	umps essors	E	Existing I Conditio	Fuel ons
TAG	Part Description	Qty	Rating	Volts	Phases	MA	FLA	LF	PF	%Eff	Peak kW Calc Method	Peak Demand (kW)	Profile	Flow Control	Mean % Flow	% Full Power	Avg Demand (kW)	Annual Hours Scheduled	%SOF	Annual Operating hours	Electrical Energy (kWh)	Measured cfm/gpm	Design cfm/gpm	% OA	% HR	Fuel Energy (GJ)
Systen	n Name: LTG_PR2008265_BL	DG2132	2																							
LTG-PC LTG-PF	Retrofit Ltg Updated 22 Oct 08 E Existing Ltg Updated 22 Oct 08	1 1	6.9 kW 10.5 kW	120 120	1 1	0 0	0	100% 100%	95% 95%	100% 100%	3 3	6.9 10.5	Constant Load Constant Load	FF FF	100% 100%	100% 100%	6.9 10.5	8,760 8,760	0% 47%	0 <mark>4,123</mark>	0 <mark>43,160</mark>	0 0	0.00 0.00	0% 0%	0% 0%	0.0 0.0
System	n Name: PLUG																									
PLUG	Plug loads	1	1. kW	115	1	0	0	100%	85%	100%	3	1.0	Constant Load	FF	100%	100%	1.0	8,760	100%	8,760	8,760	0	0.00	0%	0%	0.0
Systen	n Name: TEACHING BOILER	25																								
B-1	Boiler 1 demostration	1	8400. MBH	H 120	1	0	0	80%	85%	84%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	0%	44	0	0	0.00	0%	0%	387.9
B-2	Boiler for Demonstration	1	9. MBH	120	1	0	0	80%	85%	80%	-	0.0	Constant Load	FF	100%	100%	0.0	8,760	0%	44	0	0	0.00	0%	0%	0.4
Buildi	ng Totals:											18.4					18.4				51,920					388.3

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Clien	t: College of New	Caledo	nia - (rev	vised 2	008)		Bu	ilding	Nai	me: 1	Exterior L	ighting										Client II	D	Ĵ	26	
					j	Motor 1	Data							Ex	cisting Ele	ctrical C	ondition	25				Fans,Pu Compres	mps sors	Ex C	tisting F Conditio	Suel ns
			~		F						Peak kW	Peak					Avg	Annual		Annual	Electrical					Fuel
			Rati	V_{c}	ha						Calc	Demand		Flow	Mean %	% Full	Demand	Hours		Operating	Energy	Measured	Design			Energy
TAG	Part Description	Qty	ing	olts	ses	MA	FLA	LF	PF	%Eff	Method	(<i>kW</i>)	Profile	Control	Flow	Power	(<i>kW</i>)	Scheduled	%SOF	hours	(kWh)	cfm/gpm c	fm/gpm	% OA	% HR	(GJ)
System	Name: LTG_PR2008265_BL	LDG213	4																							
LTG-PO	Retrofit Ltg Updated 22 Oct 08	1	3.4 kW	120	1	0	0	100%	95%	100%	3	3.4	Constant Load	FF	100%	100%	3.4	8,760	0%	0	0	0	0.00	0%	0%	0.0
LTG-PR	E Existing Ltg Updated 22 Oct 08	1	3.5 kW	120	1	0	0	100%	95%	100%	3	3.5	Constant Load	FF	100%	100%	3.5	5 8,760	394%	34,504	120,903	0	0.00	0%	0%	0.0
Buildir	ng Totals:											6.9					6.9				120,903					0.0

** Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

Client: College of New Caledo	onia - (revised 2008) Building Name: H	Exterior Lighting			Client ID	326
	Motor Data	Existing El	lectrical Conditions		Fans,Pumps Compressors	Existing Fuel Conditions
TAG Part Description Qty	Phases Volts Rating	Peak kW Peak Calc Demand Flow Mean % Method (kW) Profile Control Flow	Avg Annual % Full Demand Hours Power (kW) Scheduled %SOF	Annual Electrical Operating Energy hours (kWh)	Measured Design cfm/gpm cfm/gpm	Fuel Energy % OA % HR (GJ)
Project Totals:		3510.4	3434.1	6,454,878		24,559.9

Project Totals:

Peak Demand Calculation Methods:

1) Peak Demand = Qty x MA x Volts x PF x sqrt(Phases) / 1000

2) Peak Demand = Qty x FLA x Volts x LF x PF x sqrt(Phases) / 1000

3) Peak Demand = Qty x (Rating / Efficiency) x LF

4) Peak Demand = Qty x 0.746 x (Rating / Efficiency) x LF

Avg Demand (kW) = % Full Power x Peak Demand (kW)

Annual Operating Hours = Annual Hours Scheduled x %SOF (System On Factor)

Electrical Energy (kWh) = Average Demand x Annual Operating Hours

Mean % Flow = time weighted mean flow = sum(%time x %flow)

%Full Power = time weighted mean power

= sum(%time x %power)

where %power = f(%flow) as determined based on Flow Control method

6,454,878

^{**} Ventilation Consumption is included in Annual Energy Gas Consumption. Estimate applies only to Fans supplying Outdoor Air to building that requires heating.

9. APPENDIX E – FLOOR PLANS

JOHN A BRINK - LEVEL 2 WEST

